A RELATIVIST’S TOOLKIT
The Mathematics of Black-Hole Mechanics

This textbook fills a gap in the existing literature on general relativity by providing
the advanced student with practical tools for the computation of many physically
interesting quantities. The context is provided by the mathematical theory of black
holes, one of the most elegant, successful and relevant applications of general
relativity.

Among the topics discussed are congruences of timelike and null geodesics,
the embedding of spacelike, timelike, and null hypersurfaces in spacetime, and the
Lagrangian and Hamiltonian formulations of general relativity. The book also de-
scribes the application of null congruences to the description of the event horizon,
how integration over a null hypersurface relates to black-hole mechanics, and the
relationship between the gravitational Hamiltonian and a black hole’s mass and
angular momentum.

Although the book is self-contained, it is not meant to serve as an introduction
to general relativity. Instead, it is meant to help the reader acquire advanced skills
and become a competent researcher in relativity and gravitational physics. The
primary readership consists of graduate students in gravitational physics. The book
will also be a useful reference for more seasoned researchers working in this field,

ERIC POISSON has been a faculty member at the University of Guelph since
1995. He has taught a large number of courses, including an advanced graduate
course in general relativity for which this book was written. He obtained his B.Sc.
from Laval University in Quebec City, and went to graduate school at the Uni-
versity of Alberta, in Edmonton. Poisson obtained his Ph.D. in 1991, under the
supervision of Werner Israel. He then spent three years as a postdoctoral fellow in
Kip Thorne’s research group at the California Institute of Technology, in Pasadena.
Before going to Guelph, he also spent a year with Clifford Will at Washington Uni-
versity in St Louis.



A RELATIVIST’S TOOLKIT
The Mathematics of Black-Hole Mechanics

ERIC POISSON
Department of Physics, University of Guelph

CAMBRIDGE

UNIVERSITY PRESS




PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Buitding, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 100114211, USA
477 Williamstown Road, Port Matbourne, VIC 3207, Australia
Ruiz de Alarcon 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town §001{, South Africa

http:/fwww.cambridge.org
© E. Poisson 2004
This book is in copyright. Subject to statutory exception
and 1o the provisions of refevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.
First published 2004
Printed in the United Kingdom at the University Press, Cambridge
Typeface Times 11/14 pt. System XX 2¢  [TB]

A catalogue record for this book is available from the British Library

ISBN 0521 83091 3 hardback



1

Contents

Preface
Notation and conventions
Fundamentals

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11

1.12
1.13

Vectors, dual vectors, and tensors
Covariant differentiation
Geodesics

Lie differentiation

Killing vectors

Local flatness

Metric determinant

Levi-Civita tensor

Curvature

Geodesic deviation

Fermi normal coordinates
1.11.1  Geometric construction

1.11.2 Coordinate transformation

1.11.3 Deviation vectors
1.11.4 Metricon y

1.11.5 First derivatives of the metric on y
1.11.6  Second derivatives of the metric on y
1.11.7 Riemann tensor in Fermi normal coordinates

Bibliographical notes
Problems

Geodesic congruences

2.1

Energy conditions

2.1.1  Introduction and summary

2.1.2  Weak energy condition
2.1.3  Null energy condition

page Xi
Xvi
1
2
4
6
8
10
11
12
13
[5
16
18
19
20
21
22
22
22
24
24
25
28
29
29
30
31



vi

3

Contents

2.1.4  Strong energy condition
2.1.5 Dominant energy condition
2.1.6  Violations of the energy conditions
2.2  Kinematics of a deformable medijum
2.2.1 Two-dimensjonal medium
222  Expansion
2.23  Shear
2.2.4  Rotation
2.2.5  General case
2.2.6  Three-dimensional medium
2.3 Congruence of timelike geodesics
2.3.1  Transverse metric
2.3.2  Kinematics
2.33  Frobenius’ theorem
2.3.4  Raychaudhuri’s equation
2.3.5 Focusing thcorem
2.3.6  Example
2.3.7  Another example
2.3.8  Interpretation of &
2.4  Congruence of null geodesics
2.4.1  Transverse metric
2.4.2  Kinematics
2.4.3  Frobenius’ theorem
2.44  Raychaudhuri’s equation
2.4.5  Focusing theorem
2.4.6  Example
247  Another example
2.4.8  Interpretation of &
2.5  Bibliographical notes
2.6 Problems
Hypersurfaces
3.1 Description of hypersurfaces
3.1.1  Defining equations
3.1.2 Normal vector
3.1.3  Induced metric
3.1.4 Light cone n flat spacetime
3.2  Integration on hypersurfaces
3.2.1 Surface element (non-null case)
3.2.2  Surface element (null case)
3.2.3 Element of two-surface

31
32
32
33
33
34
34
35
35
35
36
37
37
38
40
40
41
42
43

45

46
47
48
50
50
51
52
52
54
54
59
60
60
60
62
63
64
64
65
67



3.3

3.4

3.5

3.6

3.7

3.8
3.9
3.10
3.11

3.12

Contents

Gauss—Stokes theorem

3.3.1
33.2
333

First version

Conservation
Second version

Differentiation of tangent vector fields

3.4.1
34.2
343

Tangent tensor fields

Intninsic covariant derivative

Extrinsic curvature

Gauss—Codazzi equations

3.51
352
353

General form
Contracted form
Ricci scalar

Initial-value problem

3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7

Constraints

Cosmological initial values

Moment of time symmetry

Stationary and static spacetimes

Spherical space, moment of time symmetry
Spherical space, empty and flat
Conformally-flat space

Junction conditions and thin shells

3.71
3.7.2
3.7.3
3.7.4
3.7.5
3.7.6

Notation and assumptions
First junction condition
Riemann tensor

Surface stress-energy tensor
Second junction condition
Summary

Oppenheimer—Snyder collapse
Thin-shell collapse

Slowly rotating shell

Null shells

3.11.1
3.11.2
3.11.3
3.114
3.11.5
3.11.6
3117
3.11.8

Geometry

Surface stress-energy tensor

Intrinsic formulation

Summary

Parameterization of the null generators
Imploding spherical shell

Accreting black hole

Cosmological phase transition

Bibliographical notes

vil
69
69
71
72
73
73
73
75
76
76
78
78
79
79
80
81
82
82
82
84
84
85
86
87
87
88
89
90
93
94
98
98
100
102
104
104
107
109
112
114



viii

Contents

3.13 Problems
4 Lagrangian and Hamiltonian formulations of general relativity
Lagrangian formulation

4.1

4.2

4.3

4.4
4.5

5 Black holes

5.1

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.1.8

Mechanics

Field theory

General relativity

Variation of the Hilbert terin
Variation of the boundary term
Variation of the matter action
Nondynamical term

Bianchi identities

Hamiltonian formulation

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9

Mechanics

3 + | decomposition

Field theory

Foliation of the boundary
Gravitational action

Gravitational Hamiltonian

Variation of the Hamiltonian
Hamilton’s equations

Value of the Hamiltonian for solutions

Mass and angular momehntum

4.3.1  Hamiltonian definitions

4.3.2  Mass and angular momentum for stationary, axially
symmetric spacetimes

4.3.3  Komar formulae

4.3.4 Bondi—Sachs mass

4.3.5 Distinction between ADM and Bondi~Sachs masses:
Vaidya spacetime

4.3.6  Transfer of mass and angular momentum

Bibliographical notes

Problems

Schwarzschild black hole

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6

Birkhoff’s theorem

Kruskal coordinates
Eddington—Finkelstein coordinates
Painlevé—Gullstrand coordinates
Penrose—~Carter diagram

Event horizon

114
118
119
119
120
121
122
124
125
126
127
128
128
129
131
134
136
139
141
145
146
146
146

148

149
151

152
155
156
157
163
163
163
164
167
168
168
170



Contents

5.1.7  Apparent horizon

5.1.8  Distinction between event and apparent horizons:
Vaidya spacetime

5.1.9  Killing horizon

5.1.10 Bifurcation two-sphere

5.2 Reissner—Nordstrom black hole
5.2.1  Derivation of the Reissner—Nordstrdm solution
5.2.2  Kruskal coordinates
5.2.3  Radial observers in Reissner—Nordstrom spacetime
5.2.4  Surface gravity
5.3  Kerr black hole
5.3.1  The Kerr metric
5.3.2  Dragging of inertial frames: ZAMOs
5.3.3  Static limit: static observers
5.3.4  Event horizon: stationary observers
5.3.5 The Penrose process
5.3.6  Principal null congruences
5.3.7  Kerr-Schild coordinates
5.3.8  The nature of the singularity
5.3.9  Maximal extension of the Kerr spacetime
5.3.10 Surface gravity
5.3.11 Bifurcation two-sphere
5.3.12  Smair’s formula
5.3.13 Variation law
5.4 General properties of black holes
5.4.1  General black holes
5.4.2  Stationary black holes
5.4.3  Statjonary black holes in vacuum
5.5  The laws of black-hole mechanics
5.5.1  Preliminaries
5.5.2  Zeroth law
553  Generalized Smarr formula
5.5.4  First law
5.5.5 Second law
5.5.6  Third law
5.5.7  Black-hole thermodynamics
5.6  Bibliographical notes
5.7  Problems
References
Index

ix
171

172
175
176
176
176
178
181
184
187
187
188
188
189
191
192
194
{95
196
198
199
200
201
201
202
204
205
206
207
208
209
211
212
213
214
215
216
224
229






Preface

Does the world really need a new textbook on general relativity? I feel that my first
duty in presenting this book should be to provide a convincing affirmative answer
to this question.

There already exists a vast array of available books. T will not attempt here to
make an exhaustive list, but I will mention three of my favourites. For its unsur-
passed pedagogical presentation of the elementary aspects of general relativity, I
like Schutz’s A first course in general relativity. For its unsurpassed completeness,
I like Gravitation by Misner, Thome, and Wheeler. And for its unsurpassed ele-
gance and rigour, I like Wald’s General Relativity. In my vicw, a serious student
could do no better than start with Schutz for an outstanding introductory course,
then move on to Misner, Thorne, and Wheeler to get a broad coverage of many
different topics and techniques, and then finish off with Wald to gain access to the
more modern topics and thc mathematical standard that Wald has since imposed on
this field. This is a long route, but with this book I hope to help the student along.
I see my place as being somewhere between Schutz and Wald — more advanced
than Schutz but less sophisticated than Wald — and I cover some of the few topics
that are not handled by Misner, Thorne, and Wheeler.

In the winter of 1998 T was given the responsibility of creating an advanced
course in general relativity. The course was intended for graduate students working
in the Gravitation Group of the Guelph-Waterloo Physics Institute, a joint gradu-
ate programme in Physics shared by the Universities of Guelph and Waterloo. 1
thought long and hard before giving the first offering of this course, in an effort
to round up the most useful and interesting topics, and to create the best possible
course, I came up with a few guiding principles. First, I wanted to let the students
in on a number of results and techniques that are part of every relativist’s arsenal,
but are not adequately covered in the popular texts. Second, I wanted the course
to be practical, in the sense that the students would learn how to compute things
instead of being subjected to a bunch of abstract concepts. And third, I wanted to
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Xii Preface

put these techniques to work in a really cool application of the theory, so that this
whole enterprise would seem to have purpose.

As I developed the course it became clear that it would not match the materjal
covered in any of the existing textbooks; to meet my requirements I would have to
form a synthesis of many texts, I would have to consult review articles, and I would
have to go to the technical literature. This was a long but enjoyable undertaking,
and I learned a lot. It gave me the opportunity to homogenize the various separate
treatments, consolidate the various different notations, and present this synthesis
as a unified whole. During this process I started to type up lecture notes that would
be distributed to the students. These have evolved into this book.

In the end, the course was designed around my choice of ‘really cool applica-
tion’. There was no contest: the immediate winner was the mathematical theory of
black holes, surely one of the most clegant, successful, and relevant applications
of general relativity. This is covered in Chapter 5 of this book, which offers a thor-
ough review of the solutions to the Einstein field equations that describe isolated
black holes, a description of the fundamental properties of black holes that are in-
dependent of the details of any particular solution, and an introduction to the four
laws of black-hole mechanics. In the next paragraphs I outline the material covered
in the other chapters, and describe the connections with the theory of black holes.

The most important aspect of black-hole spacetimes is that they contain an event
horizon, a null hypersurface that marks the boundary of the black hole and shields
external observers from events going on inside. On this hypersurface there runs a
network (or congruence) of non-intersecting null geodesics; these are called the
null generators of the event horizon. To understand the behaviour of the horizon as
a whole it proves necessary (o understand how the generators themselves behave,
and in Chapter 2 of this book we develop the relevant techniques. The descrip-
tion of congruences is concerned with the motion of nearby geodesics relative to a
given reference geodesic; this motion is described by a deviation vector that lives
in a space orthogonal to the tangent vector of the reference geodesic. This trans-
verse space is easy to construct when the geodesics are timelike, but the case of
null geodesics is subtle. This has to do with the fact that the transverse space is then
two-dimensional — the null vector tangent to the generators is orthogonal to itself
and this direction must be explicitly removed from the transverse space. I show
how this is done in Chapter 2. While null congruences are treated in other text-
books (most notably in Wald), the student is likely to find my presentation (which
I have adapted from Carter (1979)) better suitcd for practical computations. While
Chapter 2 is concerned mostly with congruences of null geodesics, I present also
a complete treatment of the timelike case. There are two reasons for this. First,
this forms a necessary basis to understand the subtleties associated with the null
case. Second, and more importantly, the mathematical techniques involved in the
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study of congruences of timelike geodesics are used widely in the general relativ-
ity literature, most notably in the field of mathematical cosmology. Another topic
covered in Chapter 2 is the standard energy conditions of general relativity; these
constraints on the stress-energy tensor ensure that under normal circumstances,
gravity acts as an attractive force — it tends to focus geodesics. Energy conditions
appear in most theorems governing the behaviour of black holes.

Many quantities of interest in black-hole physics are defined by integration over
the event horizon. An obvious example is the hole’s surface area. Another example
is the gain in mass of an accreting black hole; this is obtained by integrating a
certain component of the accreting material’s stress-energy tensor over the event
horizon. These integrations require techniques that are introduced in Chapter 3 of
this book. In particular, we shall need a notion of surface element on the event hori-
zon. If the horizon were a timelike or a spacelike hypersurface, the construction
of a surface element would pose no particular challenge, but once again there are
interesting subtleties associated with the null case. I provide a complete treatment
of these issues in Chapter 3. T believe that my presentation is more systematic,
and more practical, than what can be found in the popular textbooks. Other topics
covered in Chapter 3 include the initial-value problem of general relativity (which
involves the induced metric and extrinsic curvature of a spacelike hypersurface)
and the Darmois—Lanczos—Israel-Barrabes formalism for junction conditions and
thin shells (which constrains the possible discontinuities in the induced metric and
extrinsic curvature). The initial-value problem is discussed at a much deeper level
in Wald, but I felt it was important to include this material here: it provides a useful
illustration of the physical meaning of the extrinsic curvature, an object that plays
an important role in Chapter 4 of this book. Junction conditions and thin shells, on
the other hand, are not covered adequately in any textbook, in spite of the fact that
the Darmois-Lanczos—Israel-Batrabgs formalism is used very widely in the litera-
ture. (Junction conditions and thin shells are touched upon in Misner, Thorne, and
Wheceler, but I find that their treatment is too brief to do justice to the formalism.)

Among the most important quantities characterizing black holes are their mass
and angular momentum, and the question arises as to how the mass and angular
momentum of an isolated body are to be defined in general relativity. I find that
the most compelling definitions come from the gravitational Hamiltonian, whose
value for a given solution to the Einstein field equations depends on a specifiable
vector field. If this vector corresponds to a time translation at spatial infinity, then
the Hamiltonian gives the total mass of the spacetime; if, on the other hand, the
vector corresponds to an asymptotic rotation about an axis, then the Hamiltonian
gives the spacetime’s total angular momentum in the direction of this axis. This
connection is both deep and beautiful, and in this book it forms the starting point
for defining black-hole mass and angular momentum. Chapter 4 is devoted to a
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systematic treatment of the Lagrangian and Hamiltonian formulations of general
relativity, with the goal in mind of arriving at well-motivated notions of mass and
angular momentum. What sets my presentation apart from what can be found in
other texts, including Misner, Thorne, and Wheeler and Wald, is that I pay careful
attention to the ‘boundary terms’ that must be included in the gravitational action
to produce a well-posed variational principle. These boundary terms have been
around for a very long time, but it is only fairly recently that their importance has
been fully recognized. In particular, they are directly involved in defining the mass
and angular momentum of an asymptotically-flat spacetime.

To set the stage, I review the fundamentals of differential geometry in Chapter 1
of this book. The collection of topics is standard: vectors and tensors, covariant
differentiation, geodesics, Lie differentiation, Killing vectors, curvature tensors,
geodesic deviation, and some others. The goal here is not to provide an introduc-
tion to these topics; although some may be new, I assume that for the most part, the
student will have encountered them before (in an introductory course at the level
of Schutz, for example). Instead, my objective with this chapter is to refresh the
student’s memory and establish the style and notation that I adopt throughout the
book.

As I have indicated, I have tried to present this material as a unified whole,
using a consistent notation and maintaining a fairly uniform level of precision and
rigour. While I have tried to be somewhat precise and rigourous, I have deliberately
avoided putting too much emphasis on this. My attitude is that it is more important
to illustrate how a theorem works and can be used in a practical situation, than
it is to provide all the fine print that goes into a rigourous proof. The proofs that
I do provide are informal; they may sometimes be incomplete, but they should
suffice to convince the student that the theorems are true. They may, however,
leave the student wanting for more; in this case I shall have to refer her to a more
authoritative text such as Wald.

I have also indicated that I wanted this book to be practical — I hope that after
studying this book, the student will be able to use what she has learned to compute
things of direct relevance to her. To encourage this I have inserted a large number
of examples within the text. [ also provide problem sets at the end of each chapter;
here the student’s understanding will be put to the test. The problems vary in dif-
ficulty, from the plug-and-grind type designed to increase the student’s familiarity
with a new technique, to the more challenging type that is supposed to make the
student think. Some of the problems require a large amount of tensor algebra, and
I strongly advise the student to let the computer perform the most routine oper-
ations. (My favourite package for tensor manipulations is GRTensorll, developed
by Peter Musgrave, Denis Pollney and Kayll Lake. It is available free of charge at
http://grtensor.phy.queensu.cal.)
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Early versions of this book have been used by graduate students who took my
course over the years. A number of them have expressed great praise by involving
some of the techniques covered here in their own research. This is extraordinarily
gratifying, and it has convinced me that a wider release of this book might do more
than just service my vanity. A number of students have carefully checked through
the manuscript for errors (typographical or otherwise), and some have made useful
suggestions for improvements. For this I thank Daniel Bruni, Sean Crowe, Luis de
Menezes, Paul Kobak, Karl Martel, Peter Martin, Sanjeev Seahra and Katrin Rohlf.
Of course, I accept full responsibility for whatever errors remain, The reader is
mnvited to report any error she may find (poisson@physics.uoguelph.ca), and can
look up those already reported at http://www.physics.uoguelph.ca/poisson/toolkit/,

This book is dedicated to Werner Israel, my teacher, mentor, and friend, whose
influence on me, both as arelativist and as a human being, runs deep. His influence,
I trust, will be felt throughout the book. Each time I started the elaboration of a new
topic I would ask myself: ‘How would Werner approach this?’ I do not believe
that the answers I came up with would come even close to his level of pedagogical
excellence, but there is no doubt that to ask the question has made me try harder to
reach that level.



Notation and conventions

I adopt the sign conventions of Misner, Thorne, and Wheeler (1973), with a metric

of signature (—1, 1, 1, 1), a Riemann tensor defined by R“ﬁy5 = [‘“ﬁa’y + ..., and

Greek indices (¢, B, ...) run from O to 3,

Jower-case Latin indices (a, b, ...) run from 1 to 3, and upper-case Latin indices

(A, B,...)run from 2 to 3. Geometrized units, in which G = ¢ = 1, are employed.
Here’s a list of frequently occurring symbols:

a Ricci tensor defined by Ryp = R

7
aup’

Symboti Description

y P

x“ Arbitrary coordinates on manifold .4
¥y Arbitrary coordinates on hypersurface X
g4 Arbitrary coordinates on two-surface S
= Equals in specified coordinates

es = dx%/ay", €% =09x%/ 304 Holonomic basis vectors

ey, €y Orthonormal basis vectors

- O
R
=S

f
ab = gapeyey

g, h, o

App) = %(Aaﬁ + Aga)
A[aﬁ] = %(Aozﬂ - Aﬁa)

Yo = OuWr
Ya= Oq Y
A% ) = VA
Anlb = DpA°
£, A%

[a pyd)

Eafys = V[_—g[aﬁ yﬁ]

B ”d3y
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dS,uv = EMUQ;ﬂ 6363 d-6
nﬂf

e = n%yg

Kap = Hog f’g"f

91 Gaﬁs waﬁ

d? = do? + sin 8 dgp?

Metric on .#

Induced metric on X

Induced metric on §

Metric determinants

Symmetrization

Antisymmetrization

Christoffel symbols constructed from gqg
Christoffel symbols constructed from f gy,
As constructed from gug

As constructed from iy

Partial differentiation with respect to x“
Partial differentiation with respect to y“
Covariant differentiation (g,g-compatibie)
Covariant differentiation (4,,-compatible)
Lie derivative of A% along u®
Permutation symbol

Levi-Civita tepsor

Directed surface element on ©

Directed surface element on §

Unit normat on ¥ (if timelike or spacelike)
+11if ¥ is timelike, —1 if T is spacelike
Extrinsic curvature of

Expansion, shear, and rotation

Line element on unit two-spherc
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1

Fundamentals

This first chapter is devoted to a brisk review of the fundamentals of differential
geometry, The collection of topics presented here is fairly standard, and most of
these topics should have been encountered in a previous introductory course on
general relativity. Some, however, may be new, or may be treated here from a
different point of view, or with an increased degree of completeness.

We begin in Section 1.1 by providing definitions for tensors on a differentiable
manifold. The point of view adopted here, and throughout the text, is entirely un-
sophisticated: We do without the abstract formulation of differential geometry and
define tensors in the old-fashioned way, in terms of how their components trans-
form under a coordinate transformation. While the abstract formulation (in which
tensors are defined as mulalinear mappings of vectors and dual vectors into real
numbers) is decidedly more elegant and beautiful, and should be an integral part
of an education in general relativity, the old approach has the advantage of econ-
omy, and this motivated its adoption here. Also, the old-fashioned way of defin-
ing tensors produces an immediate distinction between tensor fields in spacetime
(four-tensors) and tensor fields on a hypersurface (three-tensors); this distinction
will be important in later chapters of this book.

Covariant differentiation is reviewed in Section 1.2, Lie differentiation in Sec-
tion 1.4, and Killing vectors are introduced in Section 1.5. In Section 1.3 we de-
velop the mathematical theory of geodesics. The theory is based on a variational
principle and employs an arbitrary parameterization of the curve. The advantage
of this approach (over one in which geodesics are defined by parallel transport
of the tangent vector) is that the limiting case of null geodesics can be treated
more naturally. Also, it is often convenient, especially with null geodesics, to use a
Parameterization that is not affine; we will do so in later portions of this book.

In Section 1.6 we review a fundamental theorem of differential geometry, the
local flatness theorem. Here we prove the theorem in the standard way, by count-
ing the number of functions required to go from an arbitrary coordinate system
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to a locally Lorentzian frame. In Section 1.11 we extend the theorem to an entire
geodesic, and we prove it by constructing Fermi normal coordinates in a neigh-
bourhood of this geodesic.

Useful results involving the determinant of the metric tensor are derived in Sec-
tion 1.7. The metric determinant is used in Sectjon 1.8 to define the Levi-Civita ten-
sor, which will be put to use in later parts of this book (most notably in Chapter 3),
The Riemann curvature tensor and its contractions are introduced in Section 1.9,
along with the Einstein field equations. The geometrical meaning of the Riemann

tensor is explored in Section 1.10, in which we derive the equation of geodesic
deviation.

1.1 Vectors, dual vectors, and tensors

Consider a curve y on a manifold. The curve is parameterized by A and is described
in an arbitrary coordinate system by the relations x*(1). We wish to calculate the
rate of change of a scalar function f(x®) along this curve:

d af dx?

._f e f a———imime f’a.ua_

dA 0x® dA
This procedure allows us to introduce two types of objects on the manifold; u® =
dx®/dA is a vector that is everywhere tangent to y, and fo =0f/0x% is a dual
vector, the gradient of the function f. These objects transform as follows under an
arbitrary coordinate transformation from x¢ to x®':

of  8f ox*  9x“ f
x®  9x® gx¥  gx ¢

ﬁa! f—

and

’

¢ dx® ax® dx® ox¢
174 = = =
di ox® di ox®

From these equations we recover the fact that d f/dA is an invariant: ﬁaru“' =
fau®.

Any object A% which transforms as

’

, axe
A = & pa a.1)

T Bxw

under a coordinate transformation will be called a vector. On the other hand, any
object p, which transforms as

’ pC!’ (12)
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uo:

Figure 1.1 A tensor at P lives in the manifold’s tangent plane at P.

under the same coordinate transformation will be called a dual vector. The con-
traction A” p, between a vector and a dual vector is invariant under the coordinate
transformation, and is therefore a scalar.

Generalizing these definitions, a tensor of type (n,m) is an object T“"'ﬁy“_a
which transforms as

Tar,_,ﬂf N ax® - axP 9xv 9x° 7o B

Vel gxe gxB gxyY T gx® yd

(1.3)

under a coordinate transformation. The integer n is equal to the number of super-
scripts, while m is equal to the number of subscripts. It should be noted that the
order of the indices is important; in general, T‘B"'ay___s +£ T ,...5- By definition,
vectors are tensors of type (1, 0), and dual vectors are tensors of type (0, 1).

A very special tensor is the metric tensor 8up, Which is used to define the inner
product between two vectors. It is also the quantity that represents the gravitational
field in general relativity. The metric or its inverse g%# can be used to lower or raise
indices. For example, Ag = g A and p® = g pg. The inverse metric is defined
by the relations g gup = §%. The metric and its inverse are symmetric tensors.

Tensors are not actually defined on the manifold itself. To illustrate this, con-
sider the vector u® tangent to the curve ¥, as represented in Fig. 1.1. The diagram
makes it clear that the tangent vector actually ‘sticks out’ of the manifold. In fact, a
Vector at a point P on the manifold is defined in a plane tangent to the manifold at
that point; thig plane is called the tangent plane at P. Similarly, tensors ata point P
Can be thought of as living in this tangent plane. Tensors at P can be added and con-
tracted, and the result is also a tensor. However, a tensor at P and another tensor at
Q cannot be combined in a tensorial way, because these tensors belong to different
tangent planes. For example, the operations A*(P)BP(Q) and A%(Q) — A%(P)
are not defined as tensorial operations. This implies that differentiation is not a
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straightiorward operation on tensors. To define the derivative of a tensor, a rule
must be provided to carry the tensor from one point to another.

1.2 Covariant differentiation

One such rule is parallel transport. Consider a curve v, its tangent vector u®, and
a vector field A” defined in a neighbourhood of y (Fig. 1.2). Let point P on the
curve have coordinates x*, and point @ have coordinates x® + dx®. As was stated
previously, the operation

dA™ = A%(Q) — A%(P)
= AY(xP + dxf) — A% (P
— A [
= A%g dx
18 not tensorial. This is easily checked: under a coordinate transformation,

Wy 9 ox* 4o 9xY 9xf e 92x% 9xh A

= = — -+ -
BT ax B gy axe axB " P T pxaxB gxh

and this 1s not a tensorial transformation. To be properly tensorial the derivative
operator should have the form DA% = AT(P) — A%(P), where AJ(P) is the vec-
tor that is obtained by ‘transporting’ A® from Q to P. We may write this as
DA% = dA® + §A%, where §A% = AS(P) — A%(Q) is also not a tensorial oper-
ation. The precise rule for paraliel transport must now be specified. We demand
that § A% be lincar in both A* and dx?, so that §AY = Fauﬂ AH dx? for some (non-
tensorial) field I%,p called the connection. A priori, this field is freely specifiable.

AY(Q)

Figure 1.2 Differentiation of a tensor.
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We now have DAY = A“ dx? + F“ A* dx#, and dividing through by dA, the
increment in the curve’s pdlameter, we obtam

DA
TR A% gu®, (1.4)

where u? = dx# /dA is the tangent vector, and
Af g = A%g + T 5 AX. (1.5)

This is the covariant derivative of the vector A%. Other standard notations are
A"gﬂ = VgA® and DA% /d)A = V, A",

The fact that A p 15 a tensor allows us to deduce the transformation property of
the connection. Starting from ') g A* = A‘iﬁ — A%g it is easy to show that

I 2 al ﬁ
pe A 8 dxP @ an_ 0°x ax’AM.
we T 9x@ gxB P Ox4oxP gxP

Expressing A" in terms of A on the left-hand side and using the fact that A% 1s
an arbitrary vector field, we obtain
s X ax” axf o 92x%  9xh
rar = I - 7
WE dxu  9xe 9xB M 9xigxB gxh

Multiplying through by Bx”/ax?" and rearranging the indices, we arrive at

pe ax® 9xf fxk re _ 92x%  axP Jxk

WP gxe gxB gxi'  MP axupxB gxf gxn’

This is the transformation law for the connection; the second term prevents it from
transforming as a tensor.

Covariant differentiation can be extended to other types of tensors by demand-
ing that the operator D obeys the product rule of differentjal calculus. (For scalars,
it is understood that D = d.) For example, we may derive an expression for the
Covariant derivative of a dual vector from the requirement

(1.6)

d(A% pa) = D(A% py) = (DAM) py + A“D(py).

Writing the left-hand side as A% po dx? + A% pg g dx# and using Egs. (1.4) and
(1.3), we obtain

Dpo,_ uﬂ
an - Pesvs

(1.7)

Where

Pa;p = Papg — r’;ﬂpﬂ° (1.8)
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This procedure generalizes to tensors of arbitrary type. For example, the covariant
derivative of a type-(1, 1) tensor is given by
o _ fo] o K # [+
Tﬁ:y —Tﬁ,r +FWT/3 FﬁyTu' (1.9)

The rule is that there is a connection term for each tensorial index; it comes with
a plus sign if the index is a superscript, and with a minus sign if the index is a
subscript.

Up to now the connection has been left completely arbitrary. A specific choice
is made by demanding that it be symmetric and metric compatible,

[ =T%.,  gapy=0. (1.10)

In general relativity, these properties come as a consequence of Einstein’s principle
of equivalence. It is easy to show that Eqs. (1.10) imply

i [24
by = 5 8 (guy + 8ur.p — 8py.1)- (1.11)

Thus, the connection is fully determined by the metric. In this context %, are
called the Christoffel symbols.

We conclude this section by introducing some terminology. A tensor field
T B is said to be parallel transported along a curve y if its covariant deriva-

tive along the curve vanishes: DT%", /dh = T Ut =0,
B Beim

1.3 Geodesics

A curve is a geodesic if it extremizes the distance between two fixed points.
Let a curve y be described by the relations x¥(}), where A is an arbitrary pa-
rameter, and let P and Q be two points on this curve. The distance between P and

¢ along y is given by
Q
14 =f v E8apX¥if di, (1.12)
P

where x% = dx®/dA. In the square root, the positive (negative) sign is chosen if
the curve is spacelike (timelike); it is assumed that y is nowhere null. It should be
clear that £ is invariant under a reparameterization of the curve, A — X’ (A).

The curve for which £ is an exiremum is determined by substituting the
‘Lagrangian® L(x*, x*) = (£g,,4*1")!/? into the Euler-Lagrange equations,
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A straightforward calculation shows that x*(A) must satisfy the differential
equation

X+ F%yiﬁ)&” = k(A)x” (arbitrary parameter), (1.13)

where « = d In L/dA. The geodesic equation can also be written as U, ﬁuﬁ = xu®,
in which u® = 1% is tangent to the geodesic.

A particularly useful choice of parameter is proper time T when the geodesic
is timelike, or proper distance § when the geodesic is spacelike. (It is impor-
tant that this choice be made affer extremization, and not before.) Because
dr? = —gap dx® dx? for timelike geodesics and ds? = gap dx® dx? for spacelike
geodesics, we have that L = 1 in either case, and this implies ¥ = 0. The geodesic
equation becomes

X% 4+ F‘Eyiﬁﬂ =0 (affine parameter), (1.14)

or u*; ﬁuﬁ = 0, which states that the tangent vector is parallel transported along the
geodesic. These equations are invariant under reparameterizations of the form . —
A" = ak + b, where a and b are constants. Parameters related to s and T by such
transformations are called affine parameters. It is useful to note that Eq. (1.14) can
be recovered by substituting L’ = %gaﬁi‘“iﬁ into the Euler-Lagrange equations;
this gives rise to practical method of computing the Christoffel symbols.

By continuity, the general form u”‘; ﬁuﬁ = xu® for the geodesic equation must
be valid also for null geodesics. For this to be true, the parameter A cannot be
affine, because ds = dz = 0 along a null geodesic, and the limit is then singular.
However, affine parameters can nevertheless be found for null geodesics. Starting
from Eq. (1.13) it is always possible to introduce a new parameter A* such that
the geodesic equation will take the form of Eq. (1.14). It is easy to check that the
appropriate transformation is

dr* Ao
Ty =exp[f K(;\)d)&]. (1.15)

(You will be asked to provide a proof of this statement in Section 1.13, Problem
2.) Tt should be noted that while the null version of Eq. (1.13) was obtained by a
limiting procedure, the null version of Eq. (1.14) cannot be considered to be a limit
of the same equation for timelike or spacelike geodesics: the paramelerization is
highly discontinuous,

We conclude this scction with the following remark: Along an affinely param-
cterized geodesic (timelike, spacelike, or null), the scalar quantity & = u®u, is a
constant. The proof requires a single line:

de

T (uo"ua);ﬁuﬁ = (u"iﬁuﬁ)ua + u“(ua;ﬁuﬁ) =0,
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If proper time or proper distance is chosen for A, then & = F1, respectively. For a
null geodesic, £ = O.

1.4 Lie differentiation

In Section 1.2, covariant differentiation was defined by introducing a rule to trans-
port a tensor from a point Q to a neighbouring point P, at which the derjvative
was to be evaluated. This rule involved the introduction of a new structure on the
manifold, the connection. In this section we define another type of derivative — the
Lie derivative — without introducing any additional structure.

Consider a curve y, its tangent vector u* = dx®/dA, and a vector field A% de-
fined in a neighbourhood of y (Fig. 1.2). As before, the point P shall have the
coordinates x%, while the point Q shall be at x* + dx®. The equation

X =x% +dx¥% = x* + u¥dxr

can be interpreted as an infinitesimal coordinate transformation from the system x
to the system x’. Under this transforimation, the vector A% becomes

dx'®

oxP

o

A% (') = —— AP (%)
= (8% +u”, dV)AP (x)
= A%(x) + uofﬁAﬁ(x) dx.
In other words,

A'(Q) = A%(P) +u® 4 AP(P) da.

On the other hand, A%(Q), the value of the original vector field at the point Q, can
be expressed as

A%(Q) = A%(x +dx)
= A%(x) + A% (x) dx?
= A%(P) + uP A® y(P)dA.

In general, A’*(Q) and A*(Q) will not be equal. Their difference defines the Lie
derivative of the vector A® along the curve y:

A% (Q) — A" (Q)
da '
Combining the previous three equations yields

£,A%(P) =

£,A% = A% quf — % AP, (1.16)
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Despite an appearance to the contrary, £, A% is a tensor: It is easy to check that
Eq. (1.16) is equivalent to

£,AY = A%quP — u® L AP, (1.17)

whose tensorial nature is evident. The fact that £, A® can be defined without a con-
nection means that Lie differentiation is a more primitive operation than covariant
differentiation.

The definition of the Lie derivative extends to all types of tensors. For scalars,
£, f =df/dr = fou®. For dual vectors, the same steps reveal that

£y pa = pa_‘guﬂ + uﬁ‘apﬁ

(1.18)
= Pa:ﬁ”ﬁ + “ﬁ-japﬁ'
As another example, the Lie derivative of a type-(1, 1) tensor is given by
o TN+ H H o
£, ﬁ_T%,uu M,MTﬁ+u,ﬁTu (1.19)

— T I + M LL o
_Tﬁiuu i uTﬁ+M:ﬁTu'

Further generalizations are obvious. It may be verified that the Lie derivative obeys
the product rule of differential calculus. For example, the relation

£.(A%pg) = (£« A")pp + A% (£upp) (1.20)

is easily established.

A tensor field T”‘"ﬁ___ is said to be Lie fransported along a curve y if its Lie
derivative along the curve vanishes: £, T“"b,__ = 0, where u“ is the curve’s tan-
gent vector. Suppose that the coordinates are chosen so that x!, x2, and x> are all
constant on y, while x® = A varies on y. In such a coordinate system,

o ___ dxa

*
u% = — = 8%,

dA
where the symbol ‘= means ‘equals in the specified coordinate system’. It follows
that ucf 8 * 0, so that

wx 9 T

OF s K OFsse o
£, T ﬁ—T ‘3....#“ -—axo B

If the tensor is Lie transported along y, then the tensor’s components are all inde-
pendent of x" in the specified coordinate systern.

We have formulated the following theorem:

If £,,,T“"f'3___ — 0, that is, if a tensor is Lie transported along a curve y with
tangent vector 4, then a coordinate system can be constructed such that u® = 5%
and T, ;= 0. Conversely, if in a given coordinate system the components of
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a tensor do not depend on a particular coordinate x, then the Lie derivative of the
tensor in the direction of #® vanishes.

The Lie derivative is therefore the natural construct to express, covaruntly, the
invariance of a tensor under a change of position.

1.5 Killing vectors

If in a given coordinate system, the components of the metrlc do not depend on
9, then by the preceding theorem fegup = 0, where &% = 8%. The vector £% is
then called a Killing vector. The condition for € to be a Klilmg vector 1s that

0=£§:gaﬁ =Ea;ﬁ+‘§ﬁ;a- (1.21)

Thus, the tensor &, 4 1s antisymmetric if £% is a Killing vector.

Killing vectors can be used to find constants associated with the motion along
a geodesic. Suppose that «® is tangent to a geodesic affinely parameterized by .
Then

d
a(ﬂ“%‘a) = (u*Eq); puP

= 0.

In the second line, the first term vanishes by virtue of the geodestc equation, and
the second term vanishes because &y 4 is an antisymmetric tensor while 1®u? is
symmetric. Thus, #%&, is constant along the geodesic.

As an example, consider a static, spherically symmetric spacetime with metric

ds? = —A@)di® + B(r)dr? + r?dQ?,

where d2? = d6? + sin? ¢ d¢?. Because the metric does not depend on ¢ nor ¢,
the vectors
ox® N ox®

0= 50 =5

are Killing vectors. The quantities

~

E = ~L£a§3), L= MQE&)

are then constant along a geodesic to which u® is tangent. If the geodesic is time-
like and u® is the four-velocity of a particle moving on that geodesic, then E
and L can be interpreted as energy and angular momentum per unit mass, respec-
tively. It should also be noted that spherical symmetry implies the existence of two
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additional Killing vectors,

£(1y0a = sing dg + cotf cos ¢ 9y, £y 0a = — cos ¢ 3y + cot B sin ¢ 8.

It is straightforward to show that these do indeed satisfy Killing’s equation (1.21).
(To prove this is the purpose of Section 1.13, Problem 5.)

1.6 Local flatness

For a given point P in spacetime, it is always possible to find a coordinate system
x® such that

gup(P) =nog,  T% (P)=0, (1.22)

where 7415 = diag(—1, 1, 1, 1) is the Minkowski metric. Such a coordinate Sys-
tem will be called a local Lorentz frame at P. We note that it is not possible to
also set the derivatives of the connection to zero when the spacetime is curved.
The physical interpretation of the local-flatness theorem is that free-falling ob-
servers see no effect of gravity in their immediate vicinity, as required by Einstein’s
principle of equivalence.

We now prove the theorem. Let x® be an arbitrary coordinate system, and let
us assume, with no loss of generality, that P is at the origin of both coordinate
systems. Then the coordinates of a point near P are related by

xou _ Aa[;xﬁ 4+ O(x2), % = Aaﬁ’xﬁf + O(xf2),

where A"g and Aaﬁ, are constant matrices. It is easy to check that one is in fact the
inverse of the other:

of i1 oo a s _ o
AMAﬁ,—c? ‘o AM,Aﬁ—Sﬁ.

Under this transformation, the metric becomes

ga,fﬁr(P) = AaafAﬁﬁ,gaﬁ(P).

We demand that the left-hand side be equal to 7yg . This gives us 10 equations for
the 16 unknown components of the matrix A% ,. A solution can always be found,
with 6 undetermined components. This corresponds to the freedom of performing
a Lorentz transformation (3 rotation parameters and 3 boost parameters) which
does not alter the form of the Minkowski metric.

. Suppose that a particular choice has been made for A%,. Then A% is found by
verting the matrix, and the coordinate transformation is known to first order. Let
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us proceed to second order:
) ] 1 f
x% = A“ﬁxﬁ + 5 Bofgyxﬁxy + 0.

where the constant coefficients B‘gy are synunetric in the lower indices. Recalling
Eq. (1.6), we have that the connection transforms as

o’ oAt 4B AV o _na’ 4B Ly
Fﬁ'y'(P)_Aa’A ﬁ;A ]/’ ﬁ]/(P) ﬁ]/A,B'A]/“
To put the left-hand side to zero, it is sufficient to impose
a' 40 o
By — Ay ﬁV(P)'

These equations determine B‘};y uniquely, and the coordinate transformation is
now known (o second order. Irrespective of the higher-order terms, it enforces
Egs. (1.22).

We shall return in Section 1.11 with a more geometric proof of the local-flatness
theorem, and its extension from a single point P tc an entire geodesic y.

1.7 Metric determinant

The quantity \/—g, where g = det[gag], occurs frequently in differential geome-
try. We first note that \/g’/g, where g’ = det|gog], is the Jacobian of the trans-
formation x® — x® (x%). To see this, recall from ordinary differential calculus
that under such a transformation, d*x = J d*x’, where J = det[ax“/ax“'] is the
Jacobian. Now consider the transformation of the metric,

_ox® axf
ga”ﬁ’ - Bxa:mgaﬁ-

Because the determinant of a product of matrices is equal to the product of their
determinants, this equation implies g’ = gJ2, which proves the assertion.

As an important application, consider the transformation from x*, a local
Lorentz frame at P, to x, an arbitrary coordinate system. The four-dimensional
volume element around P is d*x’ = J~! d%x = Vg/g' &*x. But since g'=—1we

have that

v—gd*x (1.23)

is an invariant volume element around the arbitrary point P. This result gener
alizes to a manifold of any dimension with a metric of any signature; in this
case, |g|!/2d"x is the invariant volume element, where n is the dimension of the
manifold,
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We shall now derive another useful result,

1 1
Fi:La ot 5 g‘[“)guv,ﬂf - \/——._:g(,\/ --—g),a_ (1.24)

Consider, for any matrix M, the variation of In |detM| induced by a variation of
M’s elements. Using the product rule for determinants we have

8 1In|detM| = In |det(M + §M)| — In |detM |
 det(M + 5M)

detM
= IndetM ~Y(M + sM)

= Indet(1 + M~ sM).

We now use the identity det(1 + €) = | 4+ Tre + O(e?2), valid for any ‘small’ ma-
trix €. (Try proving this for 3 x 3 matrices.) This gives
ln|detM| = In(1 + Tr M~ s M)
=TrM~'sM.

Substituting the metric tensor in place of M gives §1n |g| = g“ﬁc?gaﬁ, or
5 .
T nlgl=g"  gup e
This establishes Eq. (1.24).
Equation (1.24) gives rise to the divergence formula: For any vector field A%,

1
AY = —— (/=A%) . 1.25
o ,___g(¢ gA%) 4 (1.25)

A similar result holds for any antisymmetric tensor field B%5:

(\/:§B°‘ﬁ),ﬁ. (1.26)

B*? -
B \/——6;

These formulae are useful for the efficient computation of covariant divergences.

1.8 Levi-Civita tensor
The permutation symbol [« B y 8], defined by
+1 if afyé is an even permutation of 0123

[y sl=1{~—1 ifaBys isan odd permutation of 0123, (1.27)
0 if any two indices are equal
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is a very useful, non-tensorial quantity. For example, it can be used to give a defi-
nition for the determinant: For any 4 x 4 matrix Mg,

detMap] = [a By §1Moa M 15 M2, M3s

(1.28)
= [a By 81MuoMpi M, 2 Ms3.

Either equality can be established by brute-force computation. The well-known
property that det[Mg,] = det[ Myg] follows directly from Eq. (1.28).
We shall now show that the combination

Eagys = v —gla By é] (1.29)
is a tensor, called the Levi-Civita tensor. Consider the quantity

ax* 3x# 3x7 3x®
[Cf ﬂ y 6] . ! 7 ’ 81 b
ax dxh dxv Bx
which is completely antisymmetric in the primed indices. This must therefore be
proportional to [e’ 8"y’ §']:

@By 8] Iax"" Bxﬁl .Bxyl .Bx‘sf
x® 9xB Jxv 5x°
for some proportionality factor A. Putting o’ 8'y/8’ = 0123 yields

9x® 8xP 3x¥ 8xd

8xY gxl 9x? 9x3"’

which determines . But the right-hand side is just the determinant of the matrix
Bx“/ax“’, that is, the Jacobian of the transformation x® (x*). So A =,/g’/g, and
we have

=Ala’ By’ 8,

A =[apfyd]

ax* oxf 9x?v Hx° ) ,
V—glaBysl ==&l p'y' §].

0x 9xb gxv’ 9x?
This establishes the fact that e4p, 5 does indeed transform as a type-(0, 4) tensor.
The proof could have started instead with the relation

ax% 9xF axv' 9x¥
ax* dxf Jxv §xb
implying A" = ,/g/g’ and showing that

g¥fvé — _

[a By 8] =M By’ 8],

1
v~—8
transforms as a type-(4, 0) tensor. (The minus sign is important.) It is easy to check

that this is also the Levi-Civita tensor, obtained from Eagys by raising all four in-
dices. Alternatively, we may show that EaBys = au8pvEyA gb-ps“”)‘f’. This relation

lor By 6] (1.30)
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implies

- V7,

1 1
£0123 = ———= [ VA plgOu&1v8AEL3 ) = — ———
Na IV

which is evidently compatible with Eq. (1.29).
The Levi-Civita tensor is used in a variety of contexts in differential geometry.
We will meet it again in Chapter 3.

1.9 Curvature

The Riemann tensor R%, s may be defined by the relation

AV AH

B = —R" 44", (1.31)

;Ba vof
which holds for any vector field A%, Evaluating the left-hand side explicitly yields

Bvs = gs, y ~Thys +T wr%rﬁ r SF By (1.32)

The Riemann tensor is obviously antisymmetric in the last two indices. Its other
symmetry properties can be established by evaluating R ys in a local Lorentz
frame at some point P. A straightforward computation glves

Ruapys = -(ga6 By — Bay.B6 — RS ay + gﬁy,as),
and this implies the tensorial relations
Rogys = —Rpays = —Ragsy = Rysap (1.33)
and
Ruapy + Ruyap + Rupya =0, (1.34)

which are valid in any coordinate system. A little more work along the same lines
reveals that the Riemann tensor satisfies the Bianchi identities,

Ruvagy + Ruvya:p + Ruvgy:a = 0. (1.35)

In addition to Eq. (1.31), the Riemann tensor satisfies the relations

Puap — Pu;fa = Rv apPv (1.36)
and
) b L A ) 1
Tv a,B—TU ﬁa—HRkafﬁT +R ﬁT ’ (137)
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which hold for arbitrary tensors pg and T's. Generalization to tensors of higher
ranks is obvious: the number of Riemann-tensor terms on the right-hand side is
equal to the number of tensorial indices.

Contractions of the Riemann tensor produce the Ricci tensor Rup and the Ricci
scalar R. These are defined by

Rup = R";Mﬁ, R = R%, (1.38)
It is easy to show that Rug is a symmetric tensor. The Einstein tensor is defined by
|

Go:ﬁ = Raﬁ — 5 Rgaﬁ; (139)
this is also a symmetric tensor. By virtue of Eq. (1.35), the Einstein tensor satisfies
Gf 5 =0, (1.40)

the contracted Bianchi identities.

The Einstein field equations,

G = 87 TP, (1.41)

relate the spacetime curvature (as represented by the Einstein tensor) to the distri-
bution of matter (as represented by 728 | the stress—energy tensor). Equation (1.40)
implies that the stress—energy tensor must have a zero divergence: T g™ 0. This
1s the tensorial expression for energy—momentum conservation. Equ’ation (1.40)
implies also that of the ten equations (1.41), only six are independent. The met-
ric can therefore be determined up to four arbitrary functions, and this reflects
our complete freedom in choosing the coordinate system. We note that the field
equations can also be written in the form

I
R — $r (T“ﬁ -5 Tg“f’), (1.42)

where 7 = T is the trace of the stress—energy tensor.

1.10 Geodesic deviation

The geometrical meaning of the Riemann tensor is best illustrated by examining
the behaviour of neighbouring geodesics. Consider two such geodesics, y and yy,
each described by relations x*(¢) in which ¢ is an affine parameter; the geodesics
can be either spacelike, timelike, or null. We want to develop the notion of a de-
viation vector belween these two geodesics, and derive an evolution equation for
this vector.

For this purpose we introduce, in the space between vo and y1, an entire family
of interpolating geodesics (Fig. 1.3). To each geodesic we assign a label s € [0, 1],
such that 49 comes with the label s = 0 and y; withs = 1. We collectively describe
these geodesics with relations x®(s, 1), in which s serves to specify which geodesic
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Figure 1.3 Deviation vector between two neighbouring geodesics.

and ¢ 13 an affine parameter along the specified geodesic. The vector field u® =
dx /0t is tangent to the geodesics, and it satisfies the equation u":ﬁuﬁ = Q.

If we keep ¢ fixed in the relations x¥ (s, ¢) and vary s instead, we obtain another
family of curves, labelled by ¢ and parameterized by s; in general these curves will
not be geodesics. The family has §% = 9x%/8s as its tangent vector field, and the
restriction of this vector to yy, £§*|;=0, gives a meaningful notion of a deviation
vector between yg and y1. We wish to derive an expression for its acceleration,

2{_—0{

dz?
in which it is understood that all quantities are to be evaluated on yp. In flat space-
time the geodesics yg and yy are straight, and although their separation may change
with 7, this change is necessarily linear: D?£%/d? = 0 in flat spacetime. A nonzero
result for DZE“ / de? will therefore reveal the presence of curvature, and indeed, this
vector will be found to be proportional to the Riemann tensor.

It follows at once from the relations u® = 9x%/dr and &% = 3x®/ds that
Ou/ds = £ /8¢, which can be written in covariant form as

£,6 =51 =0 = E‘T’ﬁuﬁ = u"iﬁéﬁ. (1.44)

= (%l ) u, (1.43)

We also have at our disposal the geodesic equation, 1® ' gitf = 0. These equations

can be combined to prove that £%u, is constant along yy:
d
+ (%) = ("ua);pu”

=& . gU" Uy + Ug: gl
";:055 P §%Uayp g
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because u%uy = & is a constant. The parameterization of the geodesics can there-
fore be tuned so that on yp, £% is everywhere orthogonal to 12

£%uy = 0. (1.45)

This means that the curves ¢t = constant cross yo orthogonally, and adds weight to
the interpretation of £% as a deviation vector.
We may now calculate the relative acceleration of Y1 with respect to yg. Starting
from Eq. (1.43) and using Eqs. (1.31) and (1.44), we obtain
DZEQ'
dt—g = (E?ﬁ“ﬁ):y”y
= (u%4E7), u”

— ™ £B,y a B y
= Uipy €Ul 4 Ut gE U

= (5 — R“Mﬁyu”)&ﬁu” + u"éﬁu’?y&‘y

= (uoiy”y)iﬁéﬁ o ”Ogy“}:ﬁéﬁ - Rauﬁr“u‘gﬁ“y + uogﬁ”ﬁ;yéy‘
The first term vanishes by virtue of the geodesic equation, while the second and
fourth terms cancel out, leaving
DEEOE
_ drz
This is the geodesic deviation equation. Tt shows that curvature produces a rela-

tive acceleration between two neighbouring geodesics: even if they start parallel,
curvature prevents the geodesics from remaining parallel.

= —R%,suPe" il (1.46)

1.11 Fermi normal coordinates

The proof of the local-flatness theorem presented in Section 1.6 gives very little
indication as to how one might construct a coordinate system that would enforce
Eqgs. (1.22). Our purpose in this section is to return to this issue, and provide a
more geometric proof of the theorem. In fact, we will extend the theorem from a
single point P to an entire geodesic y. For concreteness we will take the geodesic
to be timelike.

We will show that we can introduce coordinates x® — (¢, x*) such that near y,
the metric can be expressed as

gy = —1— Rra:b(f)xaxb + O(x3),

2 .
gmz—gmmﬁn%V+ou%, (1.47)

1
gab = 8qp — "3"Racbd(t)xcxd + 0(x3).
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These coordinates are known as Fermi normal coordinates, and ¢ is proper time
along the geodesic y, on which the spatial coordinates x are all zero. In Eq. (1.47),
the components of the Riemann tensor are evaluated on y, and they depend on ¢
only. Itis obvious that Eq. (1.47) enforces gagly = 145 and rsly = 0.The local-
flatness theorem therefore holds cverywhere on the geodesic.

The reader who is not interested in following the derivation of Eq. (1.47) can
safely skip ahead to the end of this chapter. The material introduced in this section
will not be encountered in any subsequent portion of this book.

1.11.1 Geometric construction

We will use x* = (¢, x%) to denote the Fermi normal coordinates, and x® will
refer to an arbitrary coordinate system. We imagine that we are given a spacetime
with a metric gqrg- expressed in these coordinates,

We consider a timelike geodesic y in this spacetime. Its tangent vector is u?,
and we let ¢ be proper time along y. On this geodesic we select a point O at which
weset t = (0. At this point we erect an orthonormal basis éf: (the subscript & serves
to label the four basis vectors), and we identify ¥ with the tangent vector ¥ at
O. From this we construct a basis everywhere on y by parallel transporting é‘z'
away from O. Our basis vectors therefore satisfy

’ !

é‘;;ﬁ,uﬁ' =0, & = u®, (1.48)

as well as

ga’ﬁ’éi ég = Quv, (1.49)

everywhere on y. Here, nuv = diag(—1, 1, 1, 1) is the Minkowski metric.

Consider now a spacelike geodesic 8 originating at a point P on v, at which
t = tp. This geodesic has a tangent vector v® , and we let s denote proper distance
along B; we set s = 0 at P. We assume that at P, v is orthogonal to u“"', so that
it admits the decomposition

v =08y (1.50)

To ensure that v® is properly normalized, the expansion coefficients must sat-
isfy 8,5Q0Q0 = 1. By choosing different coefficients 2% we can construct new
geodesics B that are also orthogonal to ¥ at P. We shall denote this entire family
of spacelike geodesics by f(zp, $29).

The Fermi normal coordinates of a point Q located away from the geodesic y
are constructed as follows (Fig. 1.4). First we find the unique geodesic that passes
through Q and intersects v orthogonally. We label the intersection point P and
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Figure 1.4 Geometric construction of the Fermi normal coordinates.

we call this geodesic B(tp, “Q), with tp denoting proper time at the intersection
point and “Q the expansion coefficients of v® at that point. We then assign to Q
the new coordinates

xV =1p, x* = Q% sp, (1.51)
where s¢ is proper distance from P to Q. These are the Fermi normal coordinates
of the point Q. Generically, therefore, x® = (¢, 9s), and we must now figure out
how these coordinates are related to x®', the original system.

1.11.2 Coordinate transformation

We note first that we can describe the family of geodesics B(r, ) by relations of
the form x“'(t, 29, 5). In these, the parameters # and Q¢ serve to specify which
geodesic, and s is proper distance along this geodesic. If we substitute s = 0 in
these relations, we recover the description of the timelike geodesic y in terms of its
proper time f; the parameters ¢ are then irrelevant. The tangent to the geodesics

B(t, Q%) is
, Ox®
v® :( il ) : (1.52)
as tQu

the notation indicates explicitly that the derivative with respect to s is taken while
keeping t and Q fixed. This vector is a solution to the geodesic equation subjected
to the initial condition v®|.q = Q“ég’. But the geodesic equation is invariant
under a rescaling of the affine parameter, s — s/c, in which ¢ is a constant. Under
this rescaling, v — cv® and as a consequence we have that Q¢ — ¢ Q9. We
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have therefore established the identity x* (z, ¢, 5) = x% (¢, ¢ ¢, 5/c), and as a
special case we find

X, 94, 5) = x¥ (1, 9%, 1) = x® (x%). (1.53)

By virtue of Eqs. (1.51), this relation is the desired transformation between x¥ and
the Fermt normal coordinates.
Now, as a consequence of Eqs. (1.50), (1.52), and (1.53) we have

Q08 =] = (L IRE Sl
ds s=0 dx“ 5=0
which shows that
9xe -
o |, =e, . (1.54)

From our previous observation that the relations x“'(r, Q9,0) describe the
geodesic y, we also have

!

U

axa ‘ st
o =u® =eéy. (1.55)
Y
Equations (1.54) and (1.55) tell us that on y, 8x% /9xH = &% .

1.11.3 Deviation vectors

Suppose now that in the relations x (£, 9, 5), the parameters $2¢ are varied while
keeping r and s fixed. This defines new curves that connect different geodesics B
at the same proper distance s from their common intersection point P on y. This
is very similar to the construction described in Section 1.10, and the vectors

/ Bx""
¢ = 1.56
g (asz“ ) (120

are deviation vectors relating geodesics S(t, 9) with different coefficients Q9.
Similarly,

a’
. £ = (ax ) (1.57)
at 5,807

is a deviation vector relating geodesics (¢, 27) that start at different points on y,
but share the same coefficients §¢. The four vectors defined by Egs. (1.56) and
(L57) satisfy the geodesic deviation equation, Eq. (1.46); it must be kept in mind

that in thig equation, the tangent vector is v“', not u"", and the affine parameter is
5, not ¢,
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1.11.4 Metric on y

The components of the metric in the Fermi normal coordinates are related to the
old components by the general relation

ax® axf
b = S s S

Evaluating this on y yields gaply = gg'gg'ga,ﬁ,, after using Eqs. (1.54) and (1.55).
Substituting Eq. (1.49) we arrive at

gap|, = Tap. (1.58)

This states that in the Fermi normal coordinates, the metric is Minkowski
everywhere on the geodesic y.

1.11.5 First derivatives of the metric on y

To evaluate the Christoffel symbols in the Fermi normal coordinates, we recall
from Eq. (1.51) that the curves x° = ¢, x® = Q% are geodesics, so that these rela-
tions must be solutions to the geodesic equation,

dx* o dxf dxY

a? Iy
This gives I (x*)Q°Q° = 0. On y the Christoffel symbols are functions of 1
only, and are therefore independent of Q7. Since these coefficients are arbitrary,
we conclude that 'Y |, = 0. To obtain the remaining components we recal] that
the basis vectors e}, are parallel transported along y, so that

de®

E{i +T%, 1 &l =o,
since &/ = u®. By virtue of Eqs. (1.54) and (1.55) we have that e, = 8%, in the
Fermi normal coordinates, and the parallel-transport equation implies FO;ar l, =0.
The Christoffel symbols are therefore all zero on ¥. We shall write this as

gap,y|, = 0. (1.59)

This proves that the Fermi normal coordinates enforce (he local-flatness theorem
everywhere on the geodesic .

1.11.6 Second derivatives of the metric on Y

We next tumn to the second derivatives of the metric, or the first derivatives of
the connection. From the fact that F‘%y 1s zero everywhere on ¥, we obtain
immediately

oyl =0. (1.60)



1.11 Fermi normal coordinates 23

From the definition of the Riemann tensor, Eq. (1.32), we also get

iy ly = Ryil,- (1.61)

The other components are harder to come by. For these we must involve the de-
viation vectors £} introduced in Eqs. (1.56) and (1.57). Thesc vectors satisfy the
geodesic deviation equation, Eq. (1.46), which we write in full as

dZEa
ds?
According to Eqs. (1.51), (1.52), (1.56), and (1.57) we have that v¥ = QIS EF =
8%, and &, = 589 in the Fermi normal coordinates. If we substitute &* = £ in the
geodesic deviation equation and evaluate it at s = 0, we find I% cly = Ry,
which is just a special case of Eq. (1.61).
To Jearn something new, let us substitute £* = £% instead. In this case we find

dgY
+ 2raﬁyvﬁ?f;— + (Raﬁyri + F{%yﬁ - F“yuf‘%s + F%ur%}')vﬁéyva =0.

b o b eyd
21_‘65?})9 + S( OE?(!(! + Faélb,d -~ T a,u,r'tfyd + F%“Fib)Q Q¢ =0.

Before evaluating this on y (which would give 0 = 0), we expand the first term in
powers of s:

b = D, +5T% ] v + 0% = sT%, 4| @4 + 0(sY.
Dividing through by s and then evaluating on y, we arrive at
b
(R%aa +3T%.4)|, 2707 = 0.

Because the coefficients §2¢ are arbitrary, we conclude that the quantity within the
ry q y

brackets, properly symmetrized in the indices b and d, must vanish. A little algebra
finally reveals that

o

L, . o
ab,c|y - _g( abe T Rbac)!y' (1.62)

Equations (1.60), (1.61), and (1.62) give the complete set of derivatives of the
Christoffel symbols on y.

It is now a simple matter to turn these equations into statements regarding the
Second derivatives of the metric at y. Because the metric is Minkowski everywhere
on the geodesic, only the spatial derivatives are nonzero. These are given by

Str,ab = _2Rm{b y?

2
8ta,bc = _E(Rtbac + chab)jya (1.63)

1
Bab,cd = “—E(Racbd + Radbc)]y-
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From Egs. (1.58), (1.59), and (1.63) we recover Eqgs. (1.47), the expansion of the
metric about y, to second order in the spatial displacements x¢.

1.11.7 Riemann tensor in Fermi normal coordinates

To express a given metric as an expansion in Fermi normal coordinates, it is nec-
essary to evaluate the Riemann tensor on the reference geodesic, and write it as a
function of ¢ in this coordinate system. This is not as hard as it may seem. Because
the Riemann tensor is evaluated on y, we need to know the coordinate transforma-
tion only at y; as was noted above, this is given by 8x¥ /xH = éﬁ'. We therefore
have, for example,

I
_ A“ ~eY f\ﬁ Ay
Rtabc(t) —_— R“’a’ﬁ’y’ e[ Ga Gb ec .

The difficult part of the calculation is therefore the determination of the orthonor-
mal basis (which is parallel transported on the reference geodesic). Once this is
known, the Fermi components of the Riemann tensor are obtained by projection,
and these will naturally be expressed in terms of proper time ¢.

1.12 Bibliographical notes

Nothing in this text can be claimed to be entirely original, and the bibliographical
notes at the end of each chapter intend to give credit where credit is due. During
the preparation of this chapter I have relied on the following references: d’ Inverno
(1992); Manasse and Misner (1963); Misner, Thorne, and Wheeler (1973); Wald
(1984); and Weinberg (1972).

More specifically:

Sections 1.2, 1.4, and 1.6 are based on Sections 6.3, 6.2, and 6.11 of d’Inverno,
respectively. Sections 1.7 and 1.8 are based on Sections 4.7 and 4.4 of Weinberg,
respectively. Section 1.10 is based on Section 3.3 of Wald. Finally, Section 1.11
and Problem 9 below are based on the paper by Manasse and Misner.

Suggestions for further reading:

In this Chapter I have presented a minimal account of differential geomeltry,
just enough for the reader to get by in the remaining four chapters. For a more
complete account, at a nice introductory level, I recommend the book Geometrical
methods of mathematical physics by Bernard F. Schutz. At a more advanced level I
recommend the book by Nakahara. For adanced topics that are of direct relevance
to general relativity (some of which covered here), the book by Hawking and Ellis
1s a classic reference.

I have already listed some excellent textbooks on general relativity: d’Inverno;
Misner, Thorne, and Wheeler; Schutz: Weinberg; and Wald. At an introductory



1.13 Problems 25

level the book by Hartle is a superb alternative. At a more advanced level, Synge’s
book can be a very useful reference.

1.13 Problems

Warning: The results derived in Problem 9 are used in later portions of this book.

1.

2,

3.

The surface of a two-dimensional cone is embedded in three-dimensional flat

space. The cone has an opening angle of 2«. Points on the cone which all have

the same distance » from the apex define a circle, and ¢ is the angle that runs
along the circle.

(a) Write down the metric of the cone, in terms of the coordinates r and ¢.

(b) Find the coordinate transformation x (r, ¢), y(r, ¢) that brings the metric
into the form ds? = dx? + dy2, Do these coordinates cover the entire
two-dimensional plane?

(c) Prove that any vector parallel transported along a circle of constant r on
the surface of the cone ends up rotated by an angle 8 after a complete
trip. Express g in terms of «. _

Show that if r* = dx®/dA obeys the geodesic equation in the form D¢% /d) =

kt®, then u® = dx®/dA* satisfies Du®/dA* = 0 if A* and A are related by

dA*/dr = exp [ «(A) dA.

(a) Let x¥(X) describe a timelike geodesic parameterized by a nonaffine
parameter A, and let t* = dx®/dX be the geodesic’s tangent vector.
Calculate how ¢ = —1,t® changes as a function of A.

(b) Let£® beaKilling vector. Calculate how p = £,1® changes as a function
of A on that same geodesic.

(¢) Let b” be such that in a spacetime with metric gapr £b8ap = 2C up,
where ¢ 1s a constant. (Such a vector is called homotheric.) Let x%(t)
describe a timelike geodesic parameterized by proper time 7, and let
u* = dx®/dr be the four-velocity. Calculate how g = b,u® changes
with 1.

4. Prove that the Lie derivative of a type-(0, 2) tensor is given by £,Tug =

5. Prove that g(ﬁ) and fgz)’ as given in Section 1.5, are indeed Killing vectors of

spherically symmetric spacetimes.

6. A particle with electric charge ¢ moves in a spacetime with metric gog in

the presence of a vector potential Ay. The equations of motion are u,. ﬁuﬁ =
eFopul , where u® is the four-velocity and Fyp = Agiq — Ag:p- It is assumed
that the spacetime possesses a Killing vector §%, so that fggag = £fe Ay = 0.
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10.

11.

Fundamentals

Prove that

(g + €Ay )E”

is constant on the world line of the charged particle.

In fiat spacetime, all Cartesian components of the Levi-Civita tensor can be
obtained from &,, = 1 by permutation of the indices. Using its tensorial
property under coordinate transformations, calculate E€apys in the following
coordinate systems:

(a) spherical coordinates (1,6, ¢);

(b} spherical-null coordinates (u,v,0,¢p), whereu =t —randy = ¢ +- F.
Show that your results are compatible with the general relation Eafys =
V=glaByslif(tro¢l=1in spherical coordinates, while {1 v 6 ¢] = 1
in spherical-null coordinates.

In a manifold of dimension n, the Wey! curvature tensor is defined by

2
Capys = Rapys — —— (&z[y Rsis — gsty Ra]a)

R .

Show that it possesses the same symmetries as the Riemann tensor. Also,
prove that any contracted form of the Weyl tensor vanishes identically. This
shows that the Riemann tensor can be decomposed into a tracefree part given
by the Weyl tensor, and a trace part given by the Ricci tensor. The Einstein
field equations imply that the trace part of the Riemann tensor is algebraically
related to the distribution of matter in spacetime; the tracefree part, on the
other hand, is algebraically independent of the matter. Thus, it can be said
that the Weyl tensor represents the true gravitational degrees of freedom of
the Riemann tensor. :

Prove that the relations

% = R, 487, 0% = —R%¢”

are satisfied by any Killing vector £”. Here, 0= V?*V, is the curved-
spacetime d’Alembertian operator. [Hint: Use the cyclic identity for the
Riemann tensor, Ruapy + Ruyap + Rypyq = 0.]

Express the Schwarzschild metric as an expansion in Fermi normal coordi-
nates about a radially infalling, timelike geodesic.

Construct a coordinate system in a neighbourhood of a point P in spacetime,
such that gag|p = 14, Cap,ulp =0, and

1
ga'ﬁ,uvfp = _E(Rauﬁv + Rwﬁu)lp'

Such coordinates are called Riemann normal coordinates.



12,

1.13 Problems 27

A particle moving on a circular orbit in a stationary, axially symmetric space-

. time 15 subjected to a dissipative force which drives it to another, slightly

smaller, circular orbit. During the transition, the particle loses an amount § £
of orbital energy (per unit rest-mass), and an amount 8. of orbital angular
momentum (per unit rest-mass). You are asked to prove that these quantities
are related by 8 E = Q 6L, where 2 is the particle’s original angular velocity.
By “circular orbit’ we mean that the particle has a four-velocity given by

* =y (gl + 285,

where gg) and &) are the spacetime’s timelike and rotational Killing vectors,
respectively; €2 and y are constants.

You may proceed along the following lines: First, express y in terms of F
and L. Second, find an expression for 42, the change in four-velocity as the
particle goes from its original orbit to its final orbit. Third, prove the relation

uadu® = y(BE — Q81L),

from which the theorem follows.
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Geodesic congruences

Our purpose in this chapter is to develop the mathematical techniques required in
the description of congruences, the term designating an entire system of nonin-
tersecting geodesics. We will consider separately the cases of timelike geodesics
and null geodesics. (The case of spacelike geodesics does not require a separate
treatment, as it is virtually identical to the timelike case; it is also less interestin g
from a physical point of view.) We will introduce the expansion scalar, as well
as the shear and rotation tensors, as a means of describing the congruence’s be-
haviour. We will derive a useful evolution equation for the expansion, known as

Raychaudhuri’s equation. On the basis of this equation we will show that grav-
ity tends to focus geodesics, in the sense that an mitially diverging congruence
(geodesics flying apart) will be found to diverge less rapidly in the future, and
that an initially converging congruence (geodesics coming together) will con-
verge more rapidly in the future. And we will present Frobenius’ theorem, which
states that a congruence is hypersurface orthogonal — the geodesics are every-
where orthogonal to a family of hypersurfaces — if and only if its rotation tensor
vanishes.

The chapter begins (in Section 2.1) with a review of the standard energy condi-
tions of general relativity, because some of these are required in the proof of the
focusing theorem, It continues (in Section 2.2) with a pedagogical introduction to
the expansion scalar, shear tensor, and rotation tensor, based on the kinematics of
a deformable medium. Congruences of timelike geodesics are then presented in
Section 2.3, and the case of null geodesics is treated in Section 2.4.

The techniques introduced in this chapter are used in many different areas of
gravitational physics. Most notably, they are part of the mathematical description
of event horizons, a topic covered in Chapter 5. They also play a key role in the
formulation of the singularity theorems of general relativity, a topic that (unfortu-
nately) is not covered in this book.
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Table 2.1 Energy conditions.

Name Statement Conditions

Weak Tapv®v? > 0 0>0, p+pi>0
Null Tupk®kP > 0 p+pi =0

Strong (Tup — 1T gup)v¥v? > 0 P+2ipi=20, p+pi=0
Dominant ——T‘};vﬁ future directed 220, p=|pi

2.1 Energy conditions
2.1.1 Introduction and summary

In the context of classical general relativity, it is reasonable to expect that the
stress-energy tensor will satisfy certain conditions, such as positivity of the en-
ergy density and dominance of the energy density over the pressure. Such re-
quirements are embodied in the energy conditions, which are summarized in
Table 2.1,

To put the energy conditions in concrete form it is useful to assume that the
stress-energy tensor admits the decomposition

T = pégey + p1éfel + prégel 4 p3&5éh, (2.1)

in which the vectors éﬁ form an orthonormal basis; they satisfy the relations

8apsél = n,,, 2.2)

where 7, = diag(—1, 1,1, 1) is the Minkowski metric. (It goes without saying
that the basis vectors are functions of the coordinates.) Equations (2.1) and (2.2)
imply that the quantities p (energy density) and p; (principal pressures) are eigen-
values of the stress-energy tensor, and e}, are the normalized eigenvectors.

The inverse metric can neatly be expressed in terms of the basis vectors. It is
€asy to check that the relation

g*f = prveash (2.3)

v

Where n#¥ = diag(—1, 1, 1, 1) is the inverse of Nuvs 1s compatible with Eq. (2.2).
Equations such as (2.3) are called completeness relations.
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If the stress-energy tensor is that of a perfect fluid, then p; = p, = Py =p.
Substituting this into Eq. (2.1) and using Eq. (2.3) yields

T = pogay + p(eyef + a3ef 4 el
= p&é5 + p(gf + &340
= (0 +p)égél + pg®.

The vector €] is identified with the four-velocity of the perfect fluid.

Some of the energy conditions are formulated in terms of a normalized, future-
directed, but otherwise arbitrary timelike vector v?: this represents the four-
velocity of an arbitrary observer in spacetime. Such a vector can be decomposed
as

VI (@ 4 ady 458 +cé?), y=(l—a?-p? A2 4

where a, b, and ¢ are arbitrary functions of the coordinates, restricted by a? +-
b* +c? < 1. We will also need an arbitrary, future-directed null vector k%. This
we shall express as

K = éf +-a'éf +b' 85 4-¢' &2, (2.5)

where a’, b’ and ¢’ are arbitrary functions of the coordinates, restricted by a’? 4.
b2 4 ¢ == 1. Recall that the normalization of a null vector is always arbitrary.

2.1.2 Weak energy condition

The weak energy condition states that the energy density of any matter distribu-
tion, as measured by any observer in spacetime, must be nonnegative. Because an
observer with four-velocity v® measures the energy density to be Tapv®v?f, we
must have

Tapv®v? >0 (2.6)

for any future-directed timelike vector v®. To put this in concrete form we substi-
tute Egs. (2.1) and (2.4), which gives

p+a’p, + b’p2 +c2p3 > 0.

Because a, b, ¢, are arbitrary, we may choose a = p — ¢ — 0, and this gives p > 0.
Alternatively, we may choose b = ¢ = 0, which gives p +a2p1 > 0. Recalling
that a? must be smaller than unity, we obtain 0 <p+a’p < P+ p1.So p+
r1 > 0, and similar expressions hold for p2 and p3. The weak energy condition
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therefore implies

p =0, o+ pi > 0. (2.7

2.1.3 Null energy condition

The null energy condition makes the same statement as the weak form, except that
v® is replaced by an arbitrary, future-directed null vector k%, Thus,

Tupk®k? >0 (2.8)
is the statement of the null energy condition. Substituting Eqgs. (2.1) and (2.5) gives
p+a?p1+b%pr4-c?p3 > 0.

Choosing b’ = ¢/ = 0 enforces @’ = 1, and we obtain p + p; > 0, with similar
expressions holding for p; and ps. The null energy condition therefore implies

p+pi >0, (2.9)

Notice that the weak energy condition implies the null form.

2.1.4 Strong energy condition

The statement of the strong energy condition is
1
(Taﬁ = Tgaﬁ) vf >0, 2.10)

or Tygv¥vf > —1T, where v* is an future-directed, normalized, timelike vector.
B 2 y

Because Top — %Tgaﬁ = Ryp/8m by virtue of the Einstein field equations, the
Strong energy condition is really a statement about the Ricci tensor, Substituting
Egs. (2.1) and (2.4) gives

1
y*(p +a?p1 + b py + 2 p3) > S (0= p1=p2— p3).

Choosing @ = b = ¢ = 0 enforces ¥ = 1, and we obtain p + p; + p2 + p3 > 0.
Alternatively, choosing b = ¢ = 0 implies 2 = 1/(1 — ¢?), and after some sim-
ple Eflgebra we obtain p + p1 + p2 + p3 > a%(p2 + p3 — p — p1). Because this
Mmust hold for any a? < 1, we have p 4+ p; > 0, with similar relations holding for
P2 and p3. The strong energy condition therefore implies

p+pr+p2+p3=0, p+p >0 (2.11)

It should be noted that the strong energy condition does not imply the weak form,
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2.1.5 Dominant energy condition

The dominant energy condition embodies the notion that matter should flow along
timelike or null world lines, Its precise statement is that if v® is an arbitrary, future-
directed, timelike vector field, then

~T4 v# is a future-directed, timelike or null, vector field. (2.12)

The quantity —T% vf is the matter’s momentum density as measured by an ob-
server with four-velocity v®, and this is required to be timelike or null, Substituting
Egs. (2.1) and (2.4) and demanding that —T%vP not be spacelike gives

,02 __azp[2 _ b2p22 _02[)32 > 0.

Choosing a = b = ¢ = 0 gives p? > 0, and demanding that —T %" be future di-
rected selects the positive branch: p > 0. Alternatively, choosing b = ¢ = 0 gives
p* > a’p;2. Because this must hold for any a® < 1, we have P = | pil, having
taken the future direction for —T%vﬁ. Similar relations hold for p, and p3. The
dominant energy condition therefore implies

p >0, o > |pil. (2.13)

2.1.6 Violations of the energy conditions

While the energy conditions typical ly hold for classical matter, they can be violated
by quantized matter fields. A well-known example is the Casimir vacuum energy
between two conducting plates separated by a distance d:

2 kK

P=—o-8 57

720 d*

Although quantum effects allow for a localized violation of the energy conditions,
recent work suggests that there is a limit to the extent by which the energy con-
ditions can be violated globally. In this context it is useful to formulate averaged
versions of the energy conditions. For example, the averaged null energy condition
states that the integral of Taﬁk"kﬁ along a null geodesic ¥ must be nonnegative:

/ Topk®k? d2. > 0.
4

Such averaged energy conditions play a central role in the theory of traversable
wormholes (see Section 2.6, Problem 1). The averaged null energy condition is
known to always hold in flat spacetime, for noninteracting scalar and electromag-
netic fields in arbitrary quantum states; this is true in spite of the fact that Taﬁk“’kﬁ
can be negative somewhere along the geodesic. Its status in curved spacetimes
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is not yet fully settled. A complete discussion, as of 1994, can be {ound in Mait
Visser’s book.

2.2 Kinematics of a deformable medium
2.2.1 Two-dimensional medium

As a warm-up for what is to follow, consider, in a purely Newtonian context, the
internal motion of a two-dimensional deformable medium. (Picture this as a thin
sheet of rubber; see Fig. 2.1.) How the medium actually moves depends on its in-
ternal dynamics, which will remain unspecified for the purpose of this discussion.
From a purely kinematical point of view, however, we may always write that for a
sufficiently small displacement £¥ about a reference point O,
a .

S B0 + 06,
dt
for some tensor BY. The time dependence of this tensor is determined by the
medium’s dynamics. For short time intervals,

E7(t)y = £% (1) + AE" (1),
where
AET = B (10)E (1) At + O (A7),

and Ar = 1 — to. To describe the action of B¢, we will consider the simple figure
described by £9(fg) = ro(cos ¢, sin ¢); this is a circle of radius rg drawn in the
two-dimensional medium.

Figure 2.1 Two-dimensional deformable medium.
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2.2.2 Expansion

Suppose first that B¢, is proportional to the identity matrix, so that

%: (%9 10)
0 70

where 6 = B“%. Then AET = %QrOAt(cosqb,Sin(p), which corresponds to a

change in the circle’s radius: rq = ro + %QroAt‘ The corresponding change in area

isthen AA = A; — Ay = mrg?0 At, so that
_ LA
Ag At
The quantity 6 is therefore the fractional cthange of area per unit time: we shall cal]

it the expansion paramerer. This is actually a function, because 6 may depend on
time and on the choice of reference point O.

2.2.3 Shear

Suppose next that B¢, is symmetric and tracefree, so that

a _ [0+ Ty

b (0' x “‘G+) '
Then A& = ryAs (04 oS + oy sin g, ~048ing + oy cos¢p). The paramet-
ric equation describing the new figure is ri(p) = ro(1 + oL Af cos 2¢ +
ox Atsin2¢). If oy, = 0, this represents an ellipse with major axis oriented along
the ¢ = 0 direction (Fig. 2.2). If, on the other hand, oy = 0, then the ellipse’s ma-
Jor axis is oriented along ¢ = /4. The general situation is an ellipse oriented at
an arbitrary angle. It is easy to check that the area of the figure is not affected by
the transformation. What we have, therefore, is a shearing of the figure, and o
and oy are called the shear parameters. These may also vary over the medium.
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Figure 2.2 Effect of the shear tensor.
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2.2.4 Rotation

Finally, we suppose that B, is antisymmetric, so that

e (0 o
b \-w 0/

Then A§? = rowAt(sin ¢, — cos ¢), and the new displacement vector is £9(#)) =
ro(cos @', sin ¢’), where ¢’ = ¢ — wAt. This clearly represents an overall rotation
of the original figure, and this operation also leaves the area unchanged; e is called
the rotation parameter.

2.2.5 General case

The most general matrix B has 2 x 2 = 4 components, and it may be expressed
as

a 59 0 gy Oy 0 w
0 58 Ty —04 —w 0

The action of this most general tensor is a linear combination of expansion, shear,
and rotation. The tensor can also be expressed as

1
Bap = '2‘9 Sab 1 Ogb +- Wap,

where & == BY, (the expansion scalar) is the trace part of Bap, 0ab = B(ap) -~ %9635
(the shear tensor) is the symmetric-tracefree part of Bgp, and wgp = Bigp) (the
rotation tensor) is the antisymmetric part of Bgp.

2.2.6 Three-dimensional medium

In three dimensions the tensor B, would be decomposed as

1
Bap = ‘59 Sab + Tap + Wab,

Where 8 = B is the expansion scalar, o,p = B(ap) — %96(15 the shear tensor, and
Wap = Blgp) the rotation tensor. In the three-dimensional case, the expansion is the
fractional change of volume per unit time:
1 AV
f=——.
_ V At
To see this, treat the three-dimensional relation

£7(1) = (8% + B4 ANE  (10)
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as a coordinate transformation from &9 (1) to £7(ry). The Jacobian of thig transfor-
mation isg

J = det[8%, + B% Ar]
=] + Tr[ B At]
=1+ 0A¢.

This implies that volumes at #; and fy are related by V| = (1 + B ALYV, so that
Vol = (V] — Vo)/ At. This argument shows also that the volume is not affected
by the shear and rotation tensors.

2.3 Congruence of timelike geodesics

Let & be an open region in spacetime. A congruence in & is g family of curves
such that through each point in & there passes one and only one curve from thig
family. (The curves do not intersect; picture this as a tight bundle of copper wires.)

In this section we will be interested in congruences of timelike geodesics, which

such a congruence evolves with time. More precisely stated, we want to determine
the behaviour of the deviation vector §% between two neighbouring geodesics
in the congruence. (Fig. 2.3), as a function of proper time T along the reference
geodesic, The geometric setup is the same as in Section 1.10, and the relations

Uiy = —1, uofﬁuﬁzo, uofﬁé'ﬁzg?ﬁuﬁ, Uty =0

where u® is tangent to the geodesics, will be assumed to hold. Notice in particular
that £% is orthogonal to »@- the deviation vector points in the directions transverse
to the flow of the congruence.

/&le

Tl

g o
S
10
0

Figure 2.3 Deviation vector between two neighbouring members of a
congruence,
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2.3.1 Transverse metric

Given the congruence and the associated timelike vector field u®, the spacetime
metric gqp can be decomposed into a longitudinal part —uqu g and a transverse
part kg given by

hap = gap + uqlip. (2.14)

The transverse metric is purely ‘spatial’, in the sense that it is orthogonal
to u% uheg =0 = haﬂuﬁ. It is effectively three-dimensional: in a comoving
Lorentz frame at some point P within the congruence, ug, = (—1, 0, 0,0), gop =
diag(—1,1,1, 1), and hng = diag(0, 1, 1, 1). We may also note the relations he, =

3 and hf’juh‘j8 = h%.

2.3.2 Kinematics

We now 1ntroduce the tensor field
Baﬁ == ua?ﬂ. (2.15)

Like hqg, this tensor is purely transverse, as U Bop == Ul p = %(uau");ﬁ =0
and Boqgw6 = Ug. 4 u? = 0. It determines the evolution of the deviation vector:
from £¢uf = u” 4&# we immediately obtain

£%uf = BoEl, (2.16)

and we see that B"}j measures the failure of £% to be parallel transported along the
congruence,
Equation (2.16) is directly analogous to the first equation of Section 2.2. We

Mmay decompose Byg into trace, symmetric-tracefree, and antisymmetric parts.
This gives

1
Bop = 59 hap + 0up + wag, (2.1

Where  — BY, = u® , is the expansion scalar, Cap = Blag) — %9 hag the shear
: fensor, and wgp = B.[aﬁ} the rotation tensor. These quantities come with the same
Interpretation as in Section 2.2. In particular, the congruence will be diverging
(geodesics flying apart) if # > 0, and it will be converging (geodesics coming
“together) if § < 0.
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23
b2
X
¥ ¥, Y3
Figure 2.4 Family of hypersurfaces orthogonal to a congruence of timelike

geodesics.

2.3.3 Frobenius’ theorem

The congruence will be hypersurface orthogonal if u® js everywhere propor-
tional to n%, the norma; to the hypersurfaces. Supposing that these are described
by equations of the form Q(x%) = ¢, where ¢ is a constant specific to each hyper-
surface, then Ry X ¢ 4 and

u¥uy, = —1)) Differentiating this équation gives Uap = —puD,0p — D it 8. Con-
sider now the completely antisymmetric tensor

]
Ula; gy = 30 (“a:ﬁ“r TUyatptugu — “pially — Uy upg ~ “r:ﬁ“a)'

Direct evaluation of the right-hand side, using D gy = $.q8, returns zero, We
therefore have
hypersurface orthogonal — Ua; pity) = 0. (2.18)

The converse of this staternent, that uy,, BUy) = O implies the existence of a scalar
field ® such that Ua X D 4, is also true (but harder to prove).
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Equation (2.18) is a useful result, because whether or not u® is hypersurface
orthogonal can be decided on the basis of the vector field alone, without having to
find P explicitly. We note that the geodesic equation u"i ﬁuﬁ = 0 was never used
in the derivation of Eq. (2.18). We also never used the fact that ©® was normal-
ized. Equation (2.18) is therefore quite general: A congruence of curves (timelike,
spacelike, or null) is hypersurface orthogonal if and only if Uie: gUy) = 0, where
u® is tangent to the curves. This statement is known as Frobenius’ theorem.

We now return to our geodesic congruence, and use Egs. (2.15) and (2.17) to
calculate

3tuge; puty) = 2 gy + Upyia)tip + Ui yiHa)
= 2(BiapiUy + Bryajup + Bipyia)
= 2(wapuy + WyaUpg + wgylg).

If we put the left-hand side to zero and multiply the right-hand side by u?, we ob-
tain wep = 0, because wyqu? = 0 = wpgyu? . (Recall the purely transverse prop-
erty of Byg.) Therefore,

- hypersurface orthogonal = wyp = 0. (2.19)

This concludes the proof of our initial statement.

Notice that Eq. (2.19) holds for timelike geodesics only, whereas Eq. (2.18)
is general. In fact, Eq. (2.19) could have been derived much more directly, but
in doing so we would have bypassed the more peneral formulation of Frobenius’
theorem. The direct proof goes as follows.

If u* is hypersurface orthogonal, then uy = ~u® , for some scalars ;o and O,
It follows from Wap = U[a; p) and the symmetry of ®,4p that

1
Dap = — PLalt ) = 7 Mkl

But we know that wqp must be orthogonal to u”, and the relation waﬁblﬁ = ( im-
Plies 1 o = —(11 guP)uy. This, in turn, establishes that the rotation tensor vanishes
identically: wyp = 0.

We have learned that 4 must be constant on each hypersurface, because it varies
only in the direction normal to the hypersurfaces. Thus, w can be expressed as a
function of @, and defining a new scalar ¥ = J (@) dd we find that u, is not
only proportional to a gradient, it is equal to one: uy = —W 4. Notice that if uy
€an be expressed in this form, then it automatically satisfies the geodesic equation:
Ui gt = W g 0P = W U = 3P Ry = 5 (wPup)a = 0.
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In summary:

hypersurface orthogonal if there exists a scalar field @ such that Uy X D o, which
implies “laipity) = 0. If the vector field js timelike and geodesic, then it is hy-
persurface orthogonal if there exists a scalar field W such that u, = —W o, which
implies Waf = Uly. 5] = 0,

2.3.4 Raychaudhuri’ equation
We now want to derive an evolution equation for 0, the expansion scalar. We begin
by developing an equation for By itself:

Bup.yut = Ue: gy, UM

= (Meipp = Rovppu¥ et

= (uo;puty. g — uamu/';ﬁ ~ Rovppu”ut

= =BoyB'y — Reyuputu®.
The equation for g is obtained by taking the trace:

dg

4. = ~B"Bpy ~ Rypuu?,

It is then easy to check that B‘IﬁBﬁa = %92 + G“ﬁo@ — w“ﬁwaﬁ. Making the sub-
stitution, we arrive at

dg 1
= —592 — a“’ﬁaaﬁ + m“ﬁwaﬁ - Raﬁu“uﬁ. (2.20)

This is Raychaudhuyi’s equation for a congruence of timelike geodesics. We
note that since the shear and rotation tensors are purely spatjal, aaﬁ%ﬁ > 0 and
w“ﬁwaﬁ > 0, with the equality sign holding if and only if the tensor is identically
zero.

2.3.5 Focusing theorem

The importance of Eq. (2.20) for general relativity is revealed by the follow-
ing theorem: Let a congruence of timelike geodesics be hypersurface orthogo-
nal, so that Wep = 0, and let the strong energy condition hold, so that (by virtue
of the Einstein field equations) Ropu®u? > 0. Then the Raychaudhuri equation
implies

de

1
3= ~3 9% — a“ﬁcraﬁ —~ Ropu®u? <,



2.3 Congruence of timelike geodesics 41

+~ Caustic

Figure 2.5 Geodesics converge into a caustic of the congruence.

The expansion must therefore decrease during the congruence’s evolution. Thus,
an initially diverging (f > 0) congruence will diverge less rapidly in the future,
while an initially converging (8 < 0) congruence will converge more rapidly in the
future. This is the statement of the focusing theorem. Its physical interpretation is
that gravitation is an attractive force when the strong energy condition holds, and
the geodesics get focused as a result of this attraction.
It also follows from Raychaudhuri’s equation that under the conditions of the
focusing theorem, df/dr < —%92. This can be integrated at once, giving
~1 -1, F
0 ()=t + Ex
where ¢ = 6(0). This shows that if the congruence is initially converging (fp <
0), then O(7) — —o0 within a proper time 7 < 3/|6y|. The interpretation of this
result is that the congruence will develop a caustic, a point at which some of the
geodesics come together (Fig. 2.5). Obviously, a caustic is a singularity of the
tongruence, and equations such as (2.20) lose their meaning at such points.

2.3.6 Example

As an illustrative example, let us consider the congruence of comoving world lines
N an expanding universe with metric

ds® = —d? + a?(1)(dx? + dy? + dz?),

Where a(r) is the scale factor. The tangent vector field is iy = —du, and a quick
calculation reveals that

[#)
Baﬁ = Ug;g = ; haﬁ,

where an overdot indjcates differentiation with respect to ¢. This shows that the
Shear and rotation tensors are both zero for this congruence. The expansion, on the
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other hand, is given by

volume (which is here proportional to g?),

2.3.7 Another example

As a second cxample we consider a congruence of radial, marginally bound, time-
like geodesics of the Schwarzschild spacetime. The metric is

ds? = —fdtz—l—f_l drz—l—rdez,

where f =1 — 2M/r and dQ? = g2 + sin?6 d¢?. For radial geodesics, 47 —
u® = 0, and the geodesics are marginally bound if | = f = ——uaé(‘;’) = —u;. This
means that the conserved energy is precisely equal to the reg t-mass energy, and this
gives us the equation u’ = 1/f. From the normalization condition Bap®uf =
we also get u” = +./TMT7; the UPper sign applies to outgoing geodesics, and the
lower sign appilies to ingoing geodesics.

The four-velocity is therefore gijven by

udy = Yo, + \/omlr o, Uo dx® = —dr £ f=1 /23777 dr.

It follows that Uy 1S equal to a gradient: v, = —® 4, where

b= 4M[\/r/2M + %m( VI/2M - I)}

Vr2M + 1

where a prime indjcates differentiation wigh respect to r. Completing the calcula-

tion gives
0 =12 [2M
2V 3

Not Surprisingly, the congruence is diverging (6 > 0) if the geodesics are outgoing,
and converging (@ < 0) if the geodesics are ingoing. The rate of Change of the
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expansion is calculated as d8/dr = (d8/dr)(dr/dr) = #'u", and the result is

dQ__ oM
dr ~ 23’

As dictated by the focusing theorem, df /dt is negative in both cases.

2.3.8 Interpretation of ¢

We now prove that 8 is equal to the fractional rate of change of §V, the congru-
ence’s cross-sectional volume:

f=——35V. 2.21)

Although this may already be obvious from Egs. (2.16) and (2.17), it is still in-
structive to go through a formal proof. The first step is to introduce the notions of
cross-section, and cross-sectional volume.

Select a particular geodesic y from the congruence, and on this geodesic, pick a
point P at which t = 7p. Construct, in a small neighbourhood around P, a small
set 6% (rp) of points P’ such that (i) through each of these points there passes
another geodesic from the congruence, and (ii) at each point P/, 7 is also equal to
7p. This set forms a three-dimensional region, a small segment of the hypersurface
7 = 1p (Fig. 2.6). We assume that the parameterization has been adjusted so that
y intersects 8§ X (tp) orthogonally. (There is no requirement that other geodesics
do, as the congruence may not be hypersurface orthogonal.) We shall call § X (zp)
the congruence’s cross section around the geodesic y, at proper time 7 = 7p. We
want to calculate the volume of this hypersurface segment, and compare it with the
volume of § £ (rp), where Q is a neighbouring point on y.

Q 5E(TQ) Q!

Pl §5(zp) \pr

4

Figure 2.6 Congruence’s cross section about a reference geodesic.
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geodesic from the congruence, we see that we may use y“ to labej the geodesics
themselves, By demanding that each geodesic keep its label ag i moves away from
5% (1p), we simultaneously obtain a coordinate system y“ jn § % (rg) or any other
cross section. This construction therefore defines a coordinate system (T, ¥ ina

system and the one originally in use; x@ — x¥(t, y*). Because y“ is constant along
the geodesics, we have

a o
U = (Ef—) . (2.22)
T ya
On the other hand, the vectors
axa)
el = | - (2.23)
‘ (dy” '

are tangent to the crogs sections. These relationg imply £, ¢q =0, and we also have
Uy el = holding on y (and only y).
We now introduce 2 three-tensor hap defined by

Rap = 8up egeﬁ. _ (2.24)

ds? = Gap dx® dxh

dx? xf
= (55 ¢ ")(a';b o)

= (gap eley ) dy“dy?
= hgp dy®dy?.

Thus, hgy, is the three-dimensional metric on the congruence’s Cross sections.
Because y is orthogonal to its cross sections (i, eq = 0), we have that hap =
hog egef on y, where hog = 8ap + Uyuy is the transverse meiric, If we define p°
to be the inverse of hay, then it is €asy to check that

ho — pab egef (2.25)

on y.
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The three-dimensional volume element on the cross sections, or cross-sectional
volume, is 8V = +/h d3y, where h = det[/4]. Because the coordinates y are co-
moving (since each geodesic moves with a constant value of its coordinates), dy
does not change as the cross section §%(7) evolves from t = tp to 1 = 7g9. A
change in 6V therefore comes entirely from a change in v/

__I__d_ V—‘—-——\/_ bdhab
8V dr Vhodr dr

We must now calculate the rate of change of the three-metric:
dhp

b (gop ),

= gaﬁ( u“)ef T 8ap €q (65 u.uu)

= gap(u% i) el + gup X (u”) ef)

= uﬁaeaef +uaﬁe ef

Multiplying by 2% and evaluating on y, so that Eg. (2.25) may be used, we obtain
b Aab
B == = (Bap + Bpa) (1" ie)
= 2 Bagh®?
= ZBaﬁgQﬁ
= 26.

This establishes that

0 == T E‘E vh, (2.27)

which is the same statement as in Eq. (2.21).

2.4 Congruence of null geodesics

We now turn to the case of null geodesics. The geometric setup is the same as in
the Preceding section, except that the tangent vector field, denoted k%, is null. We
_assume that the geodesics are affinely parameterized by A, so that a displacement
i,f;along a member of the congruence is described by dx® = k% dA. The deviation
Vector will again be denoted &%, and we again take it to be orthogonal to, and Lie
“transported along, the geodesics. The following equations therefore hold:

Kiha =0, KUkP =0, k68 =E%kP, k%%, =0.



U Geodesic congruences

As we were in the preceding section, we will be interested in the transverse prop-
erties of the congruence, which are determined by the deviation vector £%. We can,
however, anticipate some difficulties, because here the condition k%Ey = 0 fails to
Temove an eventual component of €% in the direction of k2 One of our first tasks,
therefore, will be to isolate the purely transverse part of the deviation vector. Thig
we will do with the help of hag, the transverse metric,

2.4.1 Transverse metric

To isolate the part of the metric that is transverse to k¥ jg not entirely straightfor-
ward when £ is null. The CXpression hy g = gog 4 kakp does not work, because
h:mkAg = ko # 0. To see what must pe done, let us go to a local Lorentz, frame at
Some point P, and let us introduce the null coordinates 3 —= 7 — xand v =¢ 4 x,
The line element can then be expressed as ds? = —du dp 4 dy? 4 gg2, Supposing
that k* is tangent (o the Clrves u = constant, we see that the transverse line el-
ement is ds? = ¢ ¥? 4+ dz2: the transverse metric is two-dimensional, This clearly
has to do with the fact that ds? — g for displacements along the v direction,

To isolate the (ransverse part of the metric we need to introduce another nuj]
vector field N, such that Nok® 5 0. Because the normalization of a nuli vec-
tor is arbitrary, we may always impose KNy = —1. If f, —dyut in the Jo-
cal Lorentz frame, then we might choose N, & ~18av. Now consider the ob-
ject hop = 8ap + ko Ng + Nekg. This s clearly orthogonal to both k% and N2
hapk = hog NP = . Furthermore, hyg £ diag(0, 0, 1. 1) in the local Lorentz
frame, and hagp is properly transverse and two-dimensional. This, then, is the object
we seek.

The transverse metric is therefore obtained as follows: Given the null vector
field k%, select an auxiliary nall vector field Ny and choose its normalization to be
such that k“ N, = —1, Thep the transverse metric ig given by

haﬁ = 8ap + kaNﬂ -+ Nakﬁ. (2.28)
It satisfies the relations
haph? = hagNP = 0, po = huhty = he, (2.29)

which confirm that hag is purely transverse (orthogonal to both k® and N®) and
effectively two-dimensiona].

Evidently, the conditions NNy = 0 and k* Ny = —1 do not determine N,
uniquely. This implies that the transverse MEtric is not unique. As we shall see,
however, quantities such as the expansion of the congruence will turn out to be the
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same for ail choices of auxiliary null vector. Further aspects of this non-unigueness
are explored in Section 2.6, Problem 6.

2.4.2 Kinematics

As before, we introduce the tensor field
Bup = ka;p (2.30)
as a measure of the failure of £ to be parallel transported along the congruence:
kP = BGEP. (2.31)

As before, Bag is orthogonal to the tangent vector field: k% Byg = 0 = Baﬁkﬁ.
However, Byg is not orthogonal to N%, and Eq. (2.31) has a non-transverse com-
ponent that should be removed.

We begin by isolating the purely transverse part of the deviation vector, which
we denote £%. Because h,g is itself purely transverse, it i$ easy to see that

E¥ = hO =% + (N, EM)k" (2.32)

is the desired object. Its covariant derivative in the direction of k% represents the
relative velocity of two neighbouring geodesics. This is given by

WP = nt BYEP 1 b gKS

where we have inserted Eq. (2.31) in the first term of the right-hand side. Calcu-
lating the second term gives

ghgk? = ht, B'GEP + (N, p8 kP )k,

and we see that the vector g“ k# has a component along k#. Once again we remove
this by projecting with he,. Usmg the last of Eqgs. (2.29) we obtain

~ #, —
(E5ph7) = H, (8 pk") = ', BLE”
= h* BAE
= h® h'y BLEP
for the transverse components of the relative velocity. In the first line we have

replaced £V with £V because B*k” = 0. In the third line we have inserted the

relation ¥ = pv 55 this holds because £ is already purely transverse.
We have obtamed

(EopkPY™ = BYGES, (2.33)
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where

Bag = h" h%B,, (2.34)

1s the purely transverse pattof B, = k.. This can be expressed in a more ex-
plicit form by using Eq. (2.28):
Bag = (8 +ky N# 4 Nak”)(gﬁ” +hgNY 4 Nk By

= (8" + ko N* Nak“)(Bﬂﬁ +hpBuNYY

= Bug +kaN“BMﬂ +kﬁBa,LN“+kakﬁB#UN“N”. (2.35)
Equation (2.33) governs the purely trangverse behaviour of the nuy conigruence,
and the vector B%&P canbe interpreted as the transverse relative velocity between
two neighbouring geodesics.

As we did before, we decompose the evolution tengor B"’aﬁ nto its irreducible
parts:

~ 1
Ba‘ﬂ = 59 ha/j + Cap + Wag, (2.36)

Where 6 = B% is the expansion scalar, oy = Biyg — 1o hap the shear tensor, ang
Wopg = E[aﬁ] the rotation tensor. The CXpansion is given more explicitly by
9 = gaﬁgaﬂ
= gaﬁ BQ!,B;

which follows from Eq. (2.35) and the fact that Byg is orthogonal to k%, From this
we obtain

6 = k. (2.37)

2.43 Frobeniyg’ theorem

We now show that if the vector field k® g such that Wap = {}, then the congru-
ence is hypersurface orthogonal, in the sense that k, must be Proportional to the
normal ¢ , of 3 family of hypersurfaces described by &(x*) =, These hyper-
surfaces must clearly be null- 8PP (b p X 8 Pkykg = 0. Furthermore, because
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& = constant

Figure 2.7 Family of hypersurfaces orthogonal to a congruence of null
geodesics.

k® is at once parallel and orthogonal to @ o (k*® o = 0), the vector k% is also tan-
gent to the hypersurfaces. The null geodesics therefore lie within the hypersurfaces
(Fig. 2.7); they are called the null generators of the hypersurfaces ®(x%) = c.

We begin with the general statement of Frobenius’ theorem derived in Sec-
tion 2.3.3: The congruence is hypersurface orthogonal if and only if ki gk = 0.
This condition implies Bagiky + Biya1kg + Bigylke = 0, and transvecting with
NY gives

Blapt = BlyalkpNY + Bigyrka N¥
= 3(Byakp — Baykp + Bpyka — Bygka)N”
= Bylakg)N” + kia Bgiy N7

But from Egq. (2.35) we also have
Blag) = Blap) = ButakpIN" — kia Bgy, N*.
and it follows immediately that é{aﬁ] = 0. We therefore can say
hypersurface orthogonal = wag =0, (2.38)

and this concludes the proof. (In Section 2.6, Problem 6 you will show that if
wag = 0 for a specific choice of auxiliary null vector N¢, then wqg = 0 for all
possible choices.)

The congruence is hypersurface orthogonal if there exists a scalar field ®(x%)
Which is constant on the hypersurfaces and ky = —u® o for some scalar p. A



50 Geodesic congruences

vector of this form automatically satisfies the geodesic equation:
ko:;ﬁkﬁ = _(;U'(D;aﬁ + (D.alfé,ﬂ)kﬂ
= =~ (1,5 ) ka,
where we have used D.op®F = b g ®f = %(Cblﬁcb-ﬁ)’a = 0. This is the gen-
eral form of the geodesic equation, correspondin g to a parameterization that is nog

affine. Affine parameterization is recovered when tok® =0, that is, when u does
not vary along the geodesics.

2.4.4 Raychaudhuri’s equation

The derivation of the nul} version of Raychaudhuri’s equation proceeds much as in
Section 2.3.4. In particular, the equation

dg
o= ~B*¥ By, —~ Rapk®k?P
follows from the same series of steps. It is then easy to check that pf Bpy =

B“ﬁéﬂa = %82 + (f"‘ﬁrfaﬂ — waﬂwaﬂ, which gives

de 1
‘&"): = ——562 — Gaﬂﬂaﬁ -+ waﬁwaﬁ — Raﬁkakﬁ‘ (239)

and rotation tensors are purely transverse, 004y > 0 and @8 Wy > 0, with the
equality sign holding if and only if the tensor vanishes.

2.4.5 Focusing theorem

dé 1
i 0V oap ~ Ragh®kP < ()

A
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where 8y = 8(0). This shows that if the congruence is initially converging (6p <
0), then #(A) — —oo within an affine parameter A < 2/[6p|. As in the case of a
timelike congruence, this generally signals the occurrence of a caustic.

2.4.6 Example

As an illustrative example, let us consider the congruence formed by the generators
of a null cone in flat spacetime. The geodesics emanate from a single point P
(which we place at the origin of the coordinate system) and they radiate in all
directions; note that P is a caustic of the congruence. In spherical coordinates,
the geodesics are described by the relations ¢ = X, r = A, § = constant, and ¢ =
constant, in which A is the affine parameter. The tangent vector field ts

ko = —0q(t —r).

We must find an auxiliary null vector field N that satisfes kgN% = —1.
If we choose N® to lie in the (¢,r) plane, the unique solution is Ny =

c')a (t +r). Wlth thls chozce we find that the transverse metric 1s given by
haﬁ = diag(0, 0, r , ¥2sin? @). A straightforward calculation gives Bag = koip =
diag(0, 0, r, r sin? 8), and we see that Baﬁ is already transverse for this choice of
N%. We have found

w 1
Bafﬂ - ; haﬁs

and this shows that the shear and rotation tensors are both zero for this congruence.
The expansion, on the other hand, is given by

This verifies the general statement (made in Section 2.4.8 below) that the expan-
sion is the fractional rate of change of the congruence’s cross-sectional area.

We might ask how making a different choice for N® would affect our results. 1t
is easy to check that the vector N, dx® = —d¢ + r sin 6 d¢ satisfies both Ny N* =
0 dﬂd N k® = —1.1tis therefore an acceptable choice of auxiliary nuil vector field.
This choice leads to a complicated expression for the transverse metric, which
Now has components along ¢ and r. And while the expression for Bqg does not
change, we find that Eaﬁ is no longer equal to Byg, and is much more complicated
than the expression given previously. You may check, however, that the relation
Byp = f’taﬂ/r is not affected by the change of auxiliary null vector. Qur results for
g, Oag, and wqp are therefore preserved.
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2.4.7 Another example

As a second example we consider the radial null geodesics of Schwarzschild Space-
time. For d§ = d¢ = 0 the Schwarzschild line element reduces (o

ds® =~ fd? 4 p=1g,2 _ —fdr— 57 dryar 4 £ dr),
where f =120/, The displacements will be null if ds2 — 0.If we define
u=1r—r* V=14 r*

Where r* = [ f=lq, +2M In(r/2M — 1), we find that 5 — constant on out-
going null geodesics, while p — constant on ingoing nul| geodesics. The vector

ya —_ — au, k;,n = —aav

are null, and they both satisfy the geodesic ¢quation, with 4-r as an affine parameter
for k3 and —r as an affine parameter for kin- (Check this.) As their labels indi-
cate, k3" Is tangent to the outgoing geodesics, while k;“ i$ tangent to the ingoing
geodesics. The con gruences are clearly hypersurface orthogonal, Their expansions
are easily calculated:

2
0 = £,
r

where the positive (negative) sign refers to the outgoing (ingoing) congruence, We
also have

dé
dr = 2
which is properly negative.

2.4.8 Interpretation of @

We shall now give a formal proof of the statement that ¢ ig the fractional rate of
change of the congruence’s cross-sectional area:
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parameterization so that g is constant on the null geodesics. The auxiliary curve
that passes through P is called B, and we have thal u = p,, at P. The cross section
§S(Ap) is defined to be a small set of points P’ in a neighbourhood of P such that
(i) through each of these points there passes another geodesic from the congruence
and another auxiliary curve, and (ii) at each point P’, A is also equal to A p and p
is equal to g, . This set forms a two-dimensional region, the intersection of small
segments of the hypersurfaces A = Ap and o = p,. We assume that the parame-
terization has been adjusted so that both y and g intersect §S(A p) orthogonally.
(There is no requirement that other curves do.)

We introduce coordinates in §S(Ap) by assigning a label 64 (A =2, 3) to each
point in the set. Recalling that through each of these points there passes a geodesic
from the congruence, we see that we may use 94 to label the geodesics themselves.
By demanding that each geodesic keep its label as it moves away from 6S(Ap}, we
simultaneously obtain a coordinate system g4 in any other cross-section §S(A).
This construction therefore produces a coordinate system (A, iz, 64) in a neigh-
bourhood of the geodesic y, and there exists a transformation between this system
and the one originally in use: x* = x%(, u, 6%). Because p and 64 are constant

( E ) 9-‘['
. ,u..

ax“
= (507)
364 /). .

are tangent to the cross sections. These relations imply £,.e4 = 0and we have also
that on y (and only y), ke €5 = No ey = (.

The remaining steps are very similar to those carried out in Section 2.3.8, and it
will suffice to present a brief outline, The two-tensor

On the other hand, the vectors

CAB = 8ap eie‘g

acts‘as a metric on 8§ S(A). The cross-sectional area 18 therefore defined by 6A =
Vo d%8, where ¢ = det[oag]. The inverse o8 of the two-metric is such that

h*P — 5 AB eie% on y, where hag = gap + ka N + Nakg is the transverse met-

ric, The relation

doap
dA

= (Bag + Bpa) eﬁeg
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follows, and taking its trace yields

1 d

§=——

Ja V7

This statement is equivalent to Eq. (2.40).

2.5 Bibliographical notes

During the preparation of this chapter I have relied on the following references:
Carter (1979); Visser (1995); and Wald (1984).

More specifically:

Section 2.1 is based on Section 9.2 of Wald and Chapter 12 of Visser. Sections
2.3 and 2.4 are based partially on Section 9.2 and Appendix B of Wald, as well as
Section 6.2.1 of Carter,

Suggestions for further reading:

The book by Matt Visser offers a complete account of the theory of traversible
wormholes and a review of the known violations of the standard energy condi-
tions. The 1988 article that started this whole field, by Morris and Thorne, is very
accessible and well worth reading.

Congruence of timelike curves play a central role in the field of mathematical
cosmology, the study of exact solutions to the Einstein field equations that de-
scribe expanding universes. This active area of research 1s reviewed in the book by
Wainwright and Ellis.

2.6 Problems

Warning: The results derived in Problem 8 are used in later portions of this book.
1. Consider a curved spacetime with metric
ds® = —~dr? + df? 4 r2(0) dQ2

where the function r (€) is such that (i) it is minimum at £ = 0, with a value ro,
and (ii) it asymptotically becomes equal to || as £ — +oo.
(a) Argue that this spacetime contains a traversable wormhole between two
asymptotically-flat regions, with a throat of radius ro.
(b) Find which energy conditions are violated at £ — 0.
2. We examine the congruence of comoving world lines of a Friedmann—
Robertson-Walker spacetime. The metric is

2

1 — kr?

ds? = —de? + az(r)( + r2 sz),
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where a(t) is the scale factor and k a constant normalized to either &1 or zero.
The vector tangent to the congruence is u®* = 3x%/9t.

(a) Show that the congruence is geodesic.

(b) Calculate the expansion, shear, and rotation of this congruence.

(¢) Use the Raychaudhuri equation to deduce

_ 4r
a 3

where p is the energy density of a perfect fluid with four-velocity u?,
and p is the pressure.

In this problem we consider the vector field

%3, = _]ﬁ___,._ (8, ++f M3 39)
JT=3M/r

in Schwarzschild spacetime; the vector is expressed in terms of the usual

Schwarzschild coordinates, and M is the mass of the black hole.

(a) Show that the vector field is timelike and geodesic. Describe the
geodesics to which u® s tangent.

(b) Calculate the expansion of the congruence. Explain why the expansion
is positive in the northern hemisphere and negative in the southern
hemisphere. Explain also why the expansion is singular at the north
and south poles.

(¢) Compute the rotation tensor for this congruence. Check that its square is
given by

(p+3p),

o M (1~ 6M/r)2
W P ewyg = .
Pep = g3 \1-3M/r

(d) Calculate dd/dr and check that Raychaudhuri’s equation is satisfied.
Derive the following evolution equations for the shear and rotation tensors of
a congruence of timelike geodesics:

2 1
Gaﬂ;#HLL — —'378 Jaﬂ - Ua’_[’o'% - wa#’wu‘é + E(U#UGJLU - wﬂuw#u)ha’ﬁ

1
- Ca;;,{jv utu’ + “'Z'ng,

— fL
waﬂ;#uﬂ = —'3—9 C{)aﬁ — O’Q[.Lw”‘é - GUQ#O'ﬂ.

Here, Cq,po is the Weyl tensor (Section 1.13, Problem 8), and REE = Rgﬁ —

%(hf"'” sz)haﬁ is the ‘transverse-tracefree’” part of the Ricci tensor; its trans-
verse part is Rgﬁ = ha“hﬁ” R,y
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In this problem we consider a spacetime with metric
r?2 + a’cos? 0
r2 4 a2
+ (r2 + az) sin® @ dgp?,

ds? = —d? +

dr? 4 (r* + a* cos* 6) do*

where a is a constant, together with a congruence of null geodesics with tan-
gent vector field

K 9y = 8, + 0, + 3.

(a) Check that k% is null, that it satisfies the geodesic equation, and that r is
an affine parameter.

(b) Find a suitable auxiliary null vector N® and calculate the congruence’s
expansion, shear, and rotation. In particular, verify the following re-
sults:

2a%cos?
(r2 4+ a%cos? 0)%’

2r
24 42%cos29’

6 oap =0, maﬁwaﬁ ==
These reveal that the congruence is diverging, shear-free, and not hy-
persurface orthogonal. '

(¢c) Show that the coordinate transformation

x=vr24+a?sin€ cosgp, y=+r%+a2sind sing, z=r cosh

brings the metric to the standard Minkowski form for flat spacetime.

Express k% in this coordinate system.
The auxiliary null vector N* introduced in Section 2.4 is not unique, and in this
problem we examine various consequences of this fact. For the purpose of this
discussion we introduce vectors €% (A = 2, 3) that point in the two directions
orthogonal to both &% and N, and we choose them to be orthonormal, so that
they satisfy gqpg éiég = d4p. We also introduce the 2 X 2 matrix

Bap = Bap é%65
AB — (Iﬂ eAeB:
the projection of the tensor Byg = kq;p in the transverse space spanned by
the vectors éi. In the following we shall use 845 and 547 to lower and raise
uppercase Latin indices; for example, BAB — BAMSBNBMN.
(a) Derive the following relations:
af __ ¢AB ra ~P nof _ pAB ax Af
hP = €s€p, B*f = B €alp,

= 84pBA8, 0% =028 5%50 W = B eeh,
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where o458 2(BAB + BBA _ 9§AB) and 0?8 = 2(BAB BBy,
These confirm that the tensors fqg, Baﬁ, Oap, and aqg are all orthog-
onal to both k¥ and N*. We now must determine how a change of
auxiliary null vector affects these results,

(b) The vector N must satisfy the relations N* Ny = 0 and k* Ny = —1.
Prove that the transformation

N® — N' = N* + ck® + c* &,

where ¢ = %c ac?, is the only one that preserves the defining relations

for the auxiliary null vector. (The coefficients ¢ are arbitrary.)
(c) Calculate how 2% changes under this transformation.
(d) Calculate how B changes.
(e¢) Show that 8 is invariant under the transformation.
(f) Prove that 0® changes according to

0" = (AcBoap) kK°KkP + (cto, )k“eg
+ (cBoBA) ikﬁ + 4B éié‘g
This shows that if o4 = 0 for one choice of N%, then o4g = 0 for any
other choice. Prove that a“ﬁo'aﬁ is tnvariant under the transformation,
(g) Prove that w*® changes according to

' = (cAcoAB) k“éﬁ (cBwBA) e%kP + whBes ég

This shows that if w,g = O for one choice of N%, then wypg = 0 for any

other choice. Prove that 0®f wep is invariant under the transformation.
These results imply that the Raychaudhuri equation is invariant under a change
of auxiliary null vector field. They also show that wyg = 0 implies hypersur-
face orthogonality for any choice of N.
We want to derive evolution equations for the shear and rotation tensors of
a congruence of null geodesics. For this purpose it is useful to refer back to
the basis k%, N%, €%, and the 2 x 2 matrix Bap = Bag é‘iég, introduced in
Problem 6. We shall also need

RaB = Raupy 83k4Epk",  Tap = En,8} K",

* Notice that R4p is a symmetric matrix, while I'4p is antisymmetric. Notice
also that it is possible to set ' g = 0 by choosing &% to be parallel transported
along the congruence.

(a) First, derive the main evolution equation,

dBap
di

= —BacBSG — Rag + TS Bep+ Iy Bac.
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(b) Second, decompose the various matrices into their irreducible parts, as
1 1
Bap = 59 8AB +0ap +waB,  Rap= 59?5,43 + Cas,

where oap and Cup are both symmetric and tracefree, while wap
is antisymmetric. Prove that % = Regk®kP and Cup = Coupy €5
k“égk", where Cqypy is the Weyl tensor (Section 1.13, Problem 8).
Then wntroduce the parameterization

0'_]_ Ux C C+ C)(
OAB = , B =
Ox —04+ A Cyx —C+
for the symmetric-tracefree matrices, and

0 w 0 T
@aB=\_, o) Tar=\_r o

for the antisymmetric matrices.
(¢) Third, and finally, derive the following explicit forms for the evolution

equations,
do 1
= miez — 2(04% + 0x?) + 20° — &,
do
-E% = —90’+ — C.;. -f-ZFO'X,
do
d; =00y —Cyx — 2oy,
d
= —0 w.
dX

Check that the equation for 8 agrees with the form of Raychandhuri’s
equation given in the text, Recall that we can always set I' = 0 by tak-
ing €’ to be parallel transported along the congruence; this eliminates
the coupling between the shear parameters.
8. Retrace the steps of Section 2.4, but without the assumption that the null

geodesics are affinely parameterized. Show that:

(a) equation (2.35) stays unchanged;

(b) the expansion is now given by 6 = k% — «, where « is defined by the
relation &€ gk = « k®.

(¢} Raychaudhuri’s equation now takes the form

1
9 o

i ‘2-92 -~ UQ'BO'aﬁ + w“ﬁwaﬂ -~ Raﬁkakﬁ.



3
Hypersurfaces

This chapter covers three main topics that can all be grouped under the rubric of
hypersurfaces, the term designating a three-dimensional submanifold in a four-
dimensional spacetime,

The first part of the chapter (Sections 3.1 to 3.3) is concerned with the intrinsic
geometry of a hypersurface, and it examines the following questions: Given that
the spacetime 1s endowed with a metric tensor gug, how does one define an
induced, three-dimensional metric 4,5 on a specified hypersurface? And once
this three-metric has been introduced, how does one define a vectorial sorface
element that allows vector fields to be integrated over the hypersurface? While
these questions admit straightforward answers when the hypersurface is either
timelike or spacelike, we will see that the null case requires special care.

The second part of the chapter (Sections 3.4 to 3.6) is concerned with the
extrinsic geometry of a hypersurface, or how the hypersuface is embedded in
the enveloping spacetime manifold, We will see how the spacetime curvature ten-
sor can be decomposed into a purely intrinsic part — the curvature tensor of the
hypersurface ~ and an extrinsic part that measures the bending of the hypersurface
in spacetime; this bending is described by a three-dimensional tensor K, known
as the extrinsic curvature. We will see what constraints the Einstein field equations
place on the induced metric and extrinsic curvature of a hypersurface.

The third part of the chapter (Sections 3.7 to 3.11) is concerned with possible
discontinuities of the metric and its derivatives across a hypersurface. We will con-
sider the following question: Suppose that a hypersurface partitions spacetime into
two regions, and that we are given a distinct metric tensor in each region; does the
union of the two metrics form a valid solution to the Einstein field equations? We
will see that the conditions for an affirmative answer are that the induced metric
and the extrinsic curvature must be the same on both sides of the hypersurface.
Failing this, we will see that a discontinuity in the extrinsic curvature can be ex-
plained by the presence of a thin distribution of matter — a surface layer — at the

50
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hypersurface. (The induced metric can never be discontinuous: The hypersurface
would not have a well-defined intrinsic geometry.) We will first develop the math-
ematical formalism of junction condifions and surface layers, and then consider
some applications,

3.1 Description of hypersurfaces
3.1.1 Defining equations

In a four-dimensional spacetime manifold, a hypersurface is a three-dimensional
submanifold that can be either timelike, spacelike, or nuil. A particular hypersur-
face X is selected either by putting a restriction on the coordinates,

P (x%) = 0, (3.1)
or by giving parametric equations of the form
x* = x(y9), (3.2)

where y? (a =1, 2, 3) are coordinates intrinsic to the hypersurface. For exam-
ple, a two-sphere in a three-dimensional flat Space can be described either by
Dx,y, ) =x24y2 72— R2 = 0, where R is the sphere’s radius, or by x =
Rsinfcos¢, y = Rsinf sing, and z = R cos ¢, where 8 and ¢ are the intrinsic

coordinates. Notice that the relations x(y?) describe curves contained entirely in
% (Fig. 3.1).

3.1.2 Normal vector

The vector @ , is normal to the hypersurface, because the value of & changes
only in the direction orthogonal to . A unit normal e can be introduced if the

Figure 3.1 A three-dimensional hypersurface in spacetime.
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hypersurface is not null. This is defined so that

n. — g = {—1 if 3 is spacelike , (3.3)

+1 if 3 1s imelike

and we demand that n* point in the direction of increasing ®: n%® o > 0. It is
easy to check that n, is given by
£d
Mo = s (34)
gW(D-MCDNI

if the hypersurface is either spacelike or timelike.
The unit normal is not defined when X. is null, because g# & ,, & ,, is then equal
to zero. In this case we let

ko = "‘(D,a (3.5)

be the normal vector; the sign is chosen so that k is future-directed when &
increases toward the future. Because k” is orthogonal to itself (k®kq = 0), this
vector is also rangent to the null hypersurface % (Fig. 3.2). In fact, by comput-
ing k":‘ﬁkﬂ and showing that it is proportional to k%, we can prove that k% is tan-
gent to null geodesics contained in X.. We have ky. gk? = ®.q5®F = D, g O P =
%(Cb‘ﬁ (D’ﬁ);a; because P g &-F is zero everywhere on %, its gradient must be di-
rected along kg, and we have that (Cb_ﬁ (I)**ﬁ);ﬂE = 2k k, for some scalar «. We have
found that the normal vector satisfies

k* kP = wck®,

B

the general form of the geodesic equation. The hypersurface is therefore gener-
ated by null geodesics, and k% is tangent to the generators. The geodesics are
parameterized by A, so that a displacement along each generator is described by
dx® = k*dA. In general A is not an affine parameter, but in special situations in

b =0

Figure 3.2 A null hypersurface and its generators.
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which the relations & (x®) = constant describe a whole family of null hypersur-
faces (so that ® g is zero not only on X but also in a neighbourhood around
%), « = 0 and A is an affine parameter.

When the hypersurface is null, it is advantageous to install on ¥ a coordinate
system that is well adapted to the behaviour of the generators. We therefore let the
parameter A be one of the coordinates, and we introduce two additional coordinates
64 (A =2,3) to label the generators; these are constant on each generator, and
they span the two-dimensional space transverse to the generators. Thus, we shall
set

y* = (x,6%) (3.6)

when ¥ is null; varyirg A while keeping 64 constant produces a displacement
along a single generator, and varying 4 produces a displacement across genera-
tors.

3.1.3 Induced metric

The metric intrinsic to the hypersurface ¥ is obtained by restricting the line el-
ement to displacements confined to the hypersurface. Recalling the parametric
equations x* = x%(y“), we have that the vectors

o _ 0x°
a — gy
are tangent to curves contained in X. (This implies that e%n, = 0 in the non-null
case, and egky = 0 in the null case.) Now, for displacements within 3 we have

e

(3.7)

ds2 = Lap dx® dxP

ax® ox P b
:g“ﬁ(aya dya)(“é*ﬁd” )

= hgp dy® dy?, (3.8)

where
hab = gag €%el (3.9)

i8 the induced metric, ot first fundamental form, of the hypersurface. It is a scalar
with respect to transformations x® — x® of the spacetime coordinates, but it be-
haves as a tensor under transformations y — y“’ of the hypersurface coordinates.
We will refer to such objects as three-tensors.

These relations simplify when the hypersurface is null and we use the
coordinates of Eg. (3.6). Then ef = (3x%/3A)ya = k% and it follows that
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It = gupk®kP = 0 and 4 = gagk®ef, =0, because by construction ef =
(8x%/0864), is orthogonal to k%. In the null case, therefore,

dsZ = oap de? do’, (3.10)

where
ax®
OAB = gap eheh, o = (8_9_’4) - (3.11)
hy

Here the induced metric is a two-tensor.
We conclude by writing down completeness relations for the inverse metric. In
the non-null case,

g*f = en“nf + h“begeg, (3.12)

where 1“7 is the inverse of the induced metric. Equation (3.12) is verified by com-

puting all inner products between n® and ¢ and recovering the expected results.
In the null case we must introduce, everywhere on £, an auxiliary null vector
field N satisfying Nok® = —1 and Nye% = 0 (see Section 2.4). Then the inverse
metric can be expressed as

g = kNP — NkP + o482 f, (3.13)

where o 48 is the inverse of o4 . Equation (3.13) is verified by computing all inner

products between k%, N*, and €% .

3.1.4 Light cone in flat spacetime

An example of a null hypersurface in flat spacetime is the future light cone
of an event P, which we place at the origin of a Cartesian coordinate sys-
tem x%. The defining relation for this hypersurface is ® =t — r = 0, where
r2 = x? 4 y% + z%. The normal vector is kg = —8,(t — r) = (—1, x/r, y/r, 2/r).
A suitable set of parametric equations is# == A, x = Asin€ cos¢, y = Asiné sing,
and z == A cos®, in which y? = (A, 8, ¢) are the intrinsic coordinates; A is an
affine parameter on the light cone’s null generators, which move with constant
values of 64 = (8, ¢).

From the parametric equations we compute the hypersurface’s tangent vectors,

a o
ey = Bx)\ = (1, sinf cos ¢, sin 6 sin ¢, cos &) = k%,
44 axa . R
ey = Y, = (0, Acos@ cos ¢, Acosf sing, —Asind),
o axa . . .
ey = = (0, —Asin@sin¢, Asiné cos¢, 0).
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You may check that these vectors are all orthogonal to k%. Inner products between
eg and eg define the two-metric o4 5, and we find

oapd0? do® = A%(d6? + sin® 0 dg?).

Not surprisingly, the hypersurface has a spherical geometry, and A is the areal
radius of the two-spheres.

It is easy to check that the unique null vector N® that satisfies the relations
Nak® = —1 and Nge} =0 is N% = L(1, —sinfcos ¢, — sin@ sine, — cos 9).
You may also verify that the vectors k%, N%, and ¢4 combine as in Eq. (3.13)
to form the inverse Minkowski metric.

3.2 Integration on hypersurfaces
3.2.1 Surface element (non-null case)

If ¥ is not null, then
dx = |h|}? B3y, (3.14)

where i = det[h4;], is an invariant three-dimensional volume element on the hy-
persurface. To avoid confusing this with the four-dimensional volume element
/—gd*x, we shall refer to d as a surface element. The combination n,dY is
a directed surface element that points in the direction of increasing $. In the null
case these quantities are not defined, because % = 0 and n, does not exist.

To see how Eq. (3.14) must be generalized so as to incorporate also the null
case, we consider the infinitesimal vector field

A%, = euapy eelel Py, (3.15)

where &4, = /—glia B y] is the Levi-Civita tensor of Section 1.8. We will
show below that

d¥y = en,dT (3.16)

when the hypersurface is not null. Thus, apart from a factor & = +1, d=, is a di-
rected surface element on ¥. Notice that when ¥ is spacelike, the factor 8 = —1
makes d X, a past-directed vector; this is unfortunately a potential source of confu-
sion. Notice also that Eq. (3.15) remains meaningful even when the hypersurface
is null. By continuity, therefore, d, is also a directed surface element on a null
hypersurface.

Because d%y is proportional to the completely antisymmetric Levi-Civita ten-
sor, its sign depends on the ordering of the coordinates y!, y2, and y*. But this or-
dering is a priori arbitrary, and we need a convention to remove the si gnambiguity.
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We shall choose an ordering that makes the scalar f = sﬂaﬂ},n”e?egeg a positive
quantity. Notice that this convention was already in force when we went from
Eg. (3.15) to Eq. (3.16): n* dZ, =dX > 0.

As a first example of how this works, consider a hypersurface of constant ¢
in Minkowsk: spacetime. If & = ¢, then n, = —384¢ is the future-directed normal
vector. If we choose the ordering y* = (x, y, z) we find that f = g;5,; = 1 has the
cotrect sign. Equation (3.15) implies dX,, = &', dx dy dz = —n,, dx dy dz, which
is compatible with Eq. (3.16).

For our second example we choose a surface of constant x in Minkowski space-
time. We take & = x, and ny = 8, points in the direction of increasing &, We im-
pose the ordering ¥y = (y, t, z) because f = €xy;; = —Exryz = Erxy; = 1 has then
the correct sign. {Notice that the more tempting ordering y¢ = (¢, y, z) would pro-
duce the wrong sign.] With this choice, Eq. (3.15) implies dX, = 6’; dtdydz =
n, dr dy dz, which is compatible with Eq. (3.16).

We now turmn to a derivation of Eq. (3.16). It is clear that dX;, must be propor-
tional to n,,, because e € apy e‘i"eg ey = 0 by virtue of the antisymmetric property
of the Levi-Civita tensor. So we may write

a B v —
Epapy €] x5 = Efny,

— [T By . .l . )
where f = guqgyntefe,es. Because f is a scalar, we can evaluate it in any con

venient coordinate system x%. We choose our coordinates so that x = &, and on
¥ we identify x with the intrinsic coordinates y*. Then f = ./—g n®. In these
coordinates gq’q’ = g% D oD g, and no =g |g‘bq’|"1/2
component of the normal, It follows that n® = g®p, £ gP®pq £ |g®®(1/2 and
we have that f = |gg®®|'/2. We now use the definition of the matrix inverse to
write g®® = cofactor(gee) /g, where the cofactor of a matrix element is the de-
terminant obtained after eliminating the row and column to which the element
belongs. This determinant is - and we conclude that

is the only nonvanishing

f =",

While this result was obtained in the special coordinates x%, it is valid in all co-
ordinate systems because £, like hgyp, 1s a scalar with respect to four-dimensional
coordinate transformattons. This result shows that when X is not null, Eq. (3.16)
1s indeed equivalent to Eq. (3.15).

3.2.2 Surface element (null case)

As we have seen in Section 3.1.2, when ¥ is null we identify y! with A, the param-
cter on the hypersurface’s null generators, and the remaining coordinates, denoted
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64, are constant on the generafors. Then e‘f = ko, &3 y = dA d%9, and we may write
the directed surface element as

A, = k¥ dS,, dA, (3.17)
where
dS,0 = £,upy b el 26 (3.18)

is interpreted as an element of two-dimensional surface area. We will show below
that this can also be expressed as

dSap = 2kio Ngj/o d°6, (3.19)

where Ny is the auxiliary null vector field introduced in Eq. (3.13), and o =
detloag], with 045 the two-metric defined by Eq. (3.11). Combining Eq. (3.19)
with Eq. (3.17) yields

AT, = —kg+/o 426 di. (3.20)

The interpretation of this result is clear: Apart from a minus sign, the surface ele-
ment is directed along ke, the normal to the null hypersurface; the factor di rep-
resents an element of parameter-distance along the null generators, and /o d?6 is
an clement of cross-sectional area — an element of two-dimensional surface area
in the directions transverse to the generators.

There is also an ordering issue w1th the coordinates 84, and our convention shall
be that the scalar f = g5, N*k" 62 e3 must be a positive guantity. Notice that
this convention was already in force when we went from Eq. (3.18) to Eq. (3.19):
N%kFP Sy = /o d%8 > 0.

As an example, consider a surface # = constant in Minkowski spacetime, where
u =t — x. The normal vector is ky = —8, (¢ — x) and we may choosc the ordering
64 = (v, z). Then N, = —-aa(t -+ x) satisfies all the requirements for an auxil-
iary null vector field. It is easy to check that with these choices, f =1 (which is
properly positive). We obtain dS;x = dydz = —dS,,, and since ¢ can be identified
with the affine parameter X, Eq. (3.17) implies d%; = dtdy dz = —dZ,. These
results are compatible with Eq. (3.20).

Let us consider a more complicated example: the light cone of Section 3.1.4.
The vectors k%, N¢, and e are displayed in that section, and the cone’s intrinsic
coordinates are y“ = (4, 8, ¢). We want to compute d%,, for this hypersurface,
starting with the definition of Eq. (3.15). We know that d £, must point in the direc-
tion of the normal, so that dX,, = — fk, d6 d¢ dA, where [ = &,y N#kel el
If we let N* = e} and k” = e} we can write this as f = [puv g y]ege‘{egeg =
det £, where E is the matrix constructed by lining up the four basis vectors. Its
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determinant is easy to compute and we obtain f = A*sin@ = 1/o. We therefore
have d¥, = —km/E d?¢ d»., which is just the same statement as in Eq. (3.20).

We must now give a proper derivation of Eq. (3.19). The steps are some-
what similar to those leading to Eq. (3.16). We begin by noting that the tensor
EvBy eg e:}; is orthogonal to e and antisymmetric in the indices y and v. It may
be expressed as

Euvpy egeg = 2 fkyuNv) = flkuNv — Nyky),

where f = e,u8, N “k”eg e; > 0, To evaluate f we choose our coordinates such

that x° = @ and x? = y° = (1, 04) on . In these coordinates, kg = —1 and
k* £ 1 are the only nonvanishing components of the normal vector, N® £1
comes as a consequence of the normalization condition N%kg = —1, and g®® = 0
follows from the fact that k, is null. Using this information we deduce that
f = /=g, and we must now compute the metric determinant in the specified co-
ordinates. For this purpose we note that the completeness relations of Eq. (3.13)
imply the following structure for the inverse metric:

0 1 0
gl=11 —2N* —N4|;
0 —N4 gA4B

this immediately implies det g™t = —det{o45], or /— = Jo. We therefore
have

f =z,

which holds in any coordinate system x®. This establishes that Eq. (3.19) is in-
deed equivalent to Eq. (3.18). This, in turn, implies that Eq. (3.20) is equivalent to
Eq. (3.15) when T is null and coordinates y* = (A, 64) are placed on the hyper-
surface.

3.2.3 Element of two-surface

The interpretation of
dS.w = Euvgy egeg d%g

as a directed element of two-dimensional surface area is not limited to the con-
sideration of null hypersurfaces. Here we consider a typical situation in which a
two-dimensional surface S is imagined to be embedded in a three-dimensional,
spacelike hypersurface .

The hypersurface ¥ is described by an equation of the form ®(x%) = 0, and
by parametric relations x%(y%); ng 8P is the future-directed unit normal, and
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the vectors e = 9x%/dy® are tangent to the hypersurface. The metric on X,

induced from gug, is hap = gop efjef , and we have the completeness relations

g% = —n%nf 4 pab egef.

The two-surface S is introduced as a submanifold of . It'is described by an
equation of the form ¥ (y%) = 0, and by parametric relations y“(¢4) in which
64 are coordinates intrinsic to S; r,  95¢ is the outward unit normal, and the
three-vectors ¢4 = 9y?/39 arc tangent to the two-surface, The metric on S,
induced from h,p, 1S 04 = hap e‘j{e’fg, and we have the completeness relations
hab — rarb o+ (TAB 6"26%.

The parametric relations y*(64) and x%(y%) can be combined to give the rela-
tions x%{?%), which describe how S is embedded in the four-dimensional space-

time. The vectors

are tangent to .S, and

is normal to §. The vector n® is also normal to S, and we have that the two-
surface admits fwo normal vectors: a timelike normal n* and a spacelike normal
r%. We note that the spacelike normal can be related to a gradient, r, o 9, ¥, if we
introduce, in a neighbourhood of X, a function W (x®) such that ¥|y = . In this
description the induced metric on S is still

b
gaB = hup eieg

= (gap cZe}) elely

= gap(eded) (e eh)

= gap ¢4
and the completeness relations
g% = —n%nP £ rorf 4 oAB e‘j‘\eg

are casily established from our preceding results.

We want to show that dS,g can be expressed neatly in terms of the timelike
normal n%, the spacelike normal r%, and /o d?g, the induced surface element on
S. The expression is

dSep = —2n[arpa/o d°6, (3.21)

where o = det[o4p]. The derivation of this result involves familiar steps. We first
note that because £,,4, egeg’ is orthogonal to % and antisymmetric in x and v, it
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may be expressed as

EjvBy e§e3 = =2fnry = —flnyry — Fuly),

B

where f_—:g”vﬁ},n“r"ezcg' > 0. To evaluate f we adopt coordinates x°

®, x! =W, and on § we identify x4 with 4. In these coordinates ne =

—(—g®) 712 is the only nonvanishing component of the timelike normal, ry =
(g¥¥)~1/2 s the only nonvanishing component of the spacelike normal, and from
the fact that these vectors are orthogonal we infer g®¥ = 0. From all this we find
that 2 = ge®%¢%Y . which we rewrite as f2 = cofactor(gqaq;) cofactor(gyy)/g.
We also have cofactor(gey) = 0, and these two equations give us enough infor-
mation to deduce

f=e.

This result is true in any coordinate system x©.
As a final remark we note that the vectors n” and % can be combined to form
null vectors k% and N, The appropriate relations are

1 o @ a_ina‘roz
E(” +r), N _s/i( )’

and these vectors are the null normals of the two-surface S. It is easy to check that
after these substitutions, Eq. (3.21) takes the form of Eq. (3.19).

K =

3.3 Gauss-Stokes theorem
3.3.1 First version

We consider a finite region ¥ of the spacetime manifold, bounded by a closed
hypersurtace 8% (Fig. 3.3). The signature of the hypersurface is not restricted: it
may have segments that are timelike, spacclike, or null. We will show that for any
vector field A% defined within 7,

f A%, JTgdtx = f A% dT,, (3.22)
v avr

where d %, is the surface clement defined by Eq. (3.15).

To derive this result, known as Gauss’ theorem, we construct the following co-
ordinate system in ¥, We imagine a nest of closed hypersurfaces foliating 7,
with the boundary 9% forming the outer layer of the nest. (Picture this as the
many layers of an onion.) We let x? be a constant on each one of these hypersur-
faces, with x¥ = 1 designating 3% and x? = O the zero-volume hypersurface at
the ‘centre’ of #". While x” grows ‘radially outward’ from this ‘centre,” we take the
remaining coordinates x“ to be angular coordinates on the closed hypersurfaces
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Y

Figure 3.3 Proof of the Gauss—Stokes theorem.

x% = constant. The coordinates y® on 3% are then identified with these angular

coordinates.
Using such coordinates, the left-hand side of Eq. (3.22) becomes

[ A”fw/—gd‘tx:f (V—g A%) o d*x

v v
:"‘:fdxoyg(a/_—g A% o d3x+fdx0¢(4/_—gA“),a d>x
;fdxoa% %«/—g AV @3x

xOZI

= % v—g A" B«

x9=0
=P JogA®dy.
e d

In the first line we have used the divergence formula for the vector field A%. The
second integral of the second line vanishes because x* are angular coordinates
and the integration is over a closed three-dimensional surface. (Understanding this
statement requires some thought. Try working through a three-dimensional version
of the proof, using spherical coordinates in flat space.) In the fourth line, the con-
tribution at x° = 0 vanishes because the ‘hypersurface’” x0 = 0 has zero volume.
It is easy to check that d%, = BgJ—_g d3y in the specified coordinates, giving

?€ A“d2a§¢‘ Al /=g d%
av av

for the right-hand side of Eq. (3.22). The two sides are therefore equal in the spec-
ified coordinate system; because Eq. (3.22) is a tensorial equation, this suffices to
establish the validity of the theorem.
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o
1'12

2

Figure 3.4 Two spacelike surfaces and their normal vectors,

3.3.2 Conservation

Gauss’ theorem has many useful applications. An example is the following con-
servation statement.
Suppose that a vector field j has a vanishing divergence,

% =0,

Then ¢, j* dZ, = O for any closed hypersurface 2. Suppolsing now that j* van-
ishes at spatijal infinity, we can choose 3 to be composed of two spacelike hyper-
surfaces, ¥ and 2, extending all the way to infinity (Fig. 3.4), and of a three-
cylinder at infinity, on which j* = 0, Then

[j“dEa+f j*dZ, = 0.
) p2)

On each of the spacelike hypersurfaces, d3, = —nevh d3y, where n is the out-
ward normal to the closed surface ¥ and # is the determinant of the 1nduced metric
on the spacelike hypersurfaces. Letting ny = nyy on % and ny = —ny 00 T,
where ni, and ny, are both future directed, we finally obtain

Fa=0 = | fmaRdy= [ e G2
1 2

The interpretation of this result is clear: If J¢ 1s a divergence-free vector, then
the ‘total charge’ [ j%n, dX is independent of the hypersurface on which it is
evaluated. This is obviously a statement of ‘charge’ conservation,
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' 3.3.3 Second version

Another version of Gauss’ theorem (usuvally called Stokes’ theorem) involves a
three-dimensional region % bounded by a closed two-surface 0 2. It states that for
any antisymmetric tensor field B in I,

1
[ B“f’;ﬁ Az, = 5315 B 45, (3.24)
2 bH

where dSqp is the two-surface element defined by Eq. (3.18).

The derivation of this identity proceeds along familiar lines. We construct a
coordinate system such that (i) x? is constant on the hypersurface ¥, (i) x! =
constant describes a nest of closed two-surfaces in ¥ (with x! = 1 representing
8% and x| = 0 the zero-area surface at the ‘centre’ of £, and (iii) x4 are angular
coordinates on the closed surfaces (with 84 = x4 on ).

It is easy to check that with such coordinates, d%, = 8% ./=g dx! dx2 dx3. The
left-hand stde of Eq. (3.24) becomes

1
fB"‘ﬁ;ﬁdza:f —— (/=g B%) 4 d%,
x

—&
_;f(«/_—g B%) 4 dx'dx?dx?
Z ,
X fdxlé‘( /_g BOI)'] dxzdx3+[dxl%( /_g BOA),Adxzdx3

xl==1

é%«/—_gBOldxzdx:%

x1=0
= ¢ J—g B d%.
ax

In the first line we have used the divergence formula for an antisymmetric tensor
field. The explicit expression for dZ, was substituted in the second line, The sec-
ond integral of the third line vanishes because x# are angular coordinates and the
domain of integration is a closed two-surtace. In the fourth line, the lower limit of
integration does not contribute because the ‘surface’ x! = 0 has zero area.

It is easy to check that in the specified coordinate system, B*? dSeg =
(B! — B1Yy, /=g d%0 = 2B°' /~% d%6. The right-hand side of Eq. (3.24) there-
fore reads

_1..% Baﬁ dSaﬁ é % BOl /_gdzg’
2 /5% ax

and Eg. (3.24) follows from the equality of both sides in the specified coordinate
system.
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3.4 Differentiation of tangent vector fields

(For the remainder of Chapter 3, except for Section 3.11, we shall assume that the
hypersurface ¥ is either spacelike or timelike. In Section 3.11 we shall return to
the case of a null hypersurface.)

3.4.1 Tangent tensor fields

Once we are presented with a hypersurface X, it is a common situation to have
tensor fields A%#™ that are defined only on 2 and which are purely tangent to the
hypersurface. Such tensors admit the decomposition

ACB Aab... egef . (3.25)

where e = dx*/dy® are basis vectors on . Equation (3.25) implies that
A%, = A“ﬁ"'nﬁ = ... = 0, which confirms that A%#" is tangent to the hy-
persurface. We note that an arbitrary tensor 7% can always be projected down
to the hypersurface, so that only its tangential components survive. The quantity
that effects the projection is h%f = h“”egefj = g"® — en?nf and Iz“‘uhﬁv e THUT
is evidently tangent to the hypersurface.

The projections

Aaﬁ'“ egef o= Agpe = hgmbpg - AT (3.26)

give the three-tensor A*”" associated with A%f"; Latin indices are lowered and
raised with &, and A%, respectively. Equations (3.25) and (3.26) show that one
can easily go back and forth between a tangent tensor field A% and its equivalent
three-tensor A%?". We emphasize that while A%’ behaves as a fensor under a
transformation y* — y* of the coordinates intrinsic to 2, it is a scalar under a
transformation x¥ — x® of the spacetime coordinates.

3.4.2 Intrinsic covariant derivative

We wish to examine how tangent tensor fields are differentiated. We want to relate
the covariant derivative of A*# (with respect to a connection that is compatible
with the spacetime metric gqg) to the covariant derivative of A%?", defined in terms
of a connection that is compatible with the induced metric A45. For simplicity we
shall restrict our attention (o the case of a tangent vector field A%, such that

A% = A%

a’?

Aana = 0, Ag_ = AQ' eg-

Generalization to three-tensors of higher ranks will be obvious,
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We define the intrinsic covariant derivative of a three-vector A, to be the pro-
jection of A,. 4 onto the hypersurface:

Aalp = A g eel. (3.27)

We will show that Ay, as defined here, is nothing but the covariant derivative of
Ag defined in the usual way in terms of a connection "%, thatis compatiblc with

hab.
To get started, let us express the right-hand side of Eq. (3.27) as

Aa;ﬁegeg = (Aaef{);gef - Aaeg;ﬁebﬁ

= Aa-ﬁef - eay;ﬁef/l“eg

punad axﬁ —'8";3 —ec ea}/;ﬁeb AC

= Aa,b — FC(,;,AC,

where we have defined
TCeab = €l eay . get. (3.28)
Equation (3.27) then reads
Aaip = Aup — T4 Ac, (3.29)

and this 1s the familiar expression for the covariant derivative.

The connection used here is the one defined by Eq. (3.28), and we would like to
show that it is compatible with thc induced metric. In other words, we would like
to prove that I'c,p, as defined by Eq. (3.28), can also be expressed as

1
Peap = ) (hca,b + hepa — hab,c)- (3.30)

This could be done directly by working out the right-hand side of Eq. (3.28). It is
easier, however, to show that the connection is such that haplc = hop:y egefey ==
0. Indeed,

haﬁ;y egegef = (ga'ﬁ - Enaﬂﬁ);}, egefeg
= _S(nrx;ynﬁ + nanﬁ;},)eg’efe}’
=0,

because n, e; = 0. Intrinsic covariant differentiation is therefore the same opera-
tion as straightforward covariant differentiation of a three-tensor.
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3.4.3 Extrinsic curvature

The %uantities Agip = Ay ﬁegef are the tangential components of the vector

A“)ﬁﬁeb . The guestion we would like to investigate now is whether this vector pos-
sesses also a normal component.

To answer this we re-express A"E ﬁef as g‘LA'L:' ﬁef and decompose the metric
into its normal and tangential parts, as in Eq. (3.12). This gives

A“‘Eﬁef = (en®n, + h“'"effem”)A‘tfﬁef
= g(n,iA"fﬁef)n“ + R (Au;gen’jef)eff,

and we see that while the second term is tangent to the hypersurtface, the first term
is normal to it. We now use Eq. (3.27) and the fact that A* is orthogonal to n:

Ac‘éﬁef = —s(n#;ﬁA”eﬁ)n“ + hY" Ayl
= A, e —eA” (nmﬁeé‘ef)n“.
At this point we introduce the three-tensor
Kab = ne.p egef, | (3.31)

called the extrinsic curvature, or second fundamental form, of the hypersurface .
In terms of this we have

A el = A4, % — 8 A7 Kopn®, (3.32)

and we see that A%, gives the purely tangential part of the vector field, while
—£A? K4p represents the normal component. This answers our question: The nor-
mal component vanishes if and only if the extrinsic curvature vanishes.

We note that if e is substituted in place of A%, then A¢ = 8¢, and Egs. (3.29),
(3.32) imply

eff;ﬁef =T, ec —eKapn®. (3.33)

This is known as the Gauss—Weingarten equation.
The extrinsic curvature is a very important quantity; we will encounter it often
in the remaining sections of this book. We may prove that it is a symmetric tensor:

Kba _— Kﬂb' (3.34)

The proof js based on the properties that (i) the vectors 2 and n® are orthog-
onal, and (ii) the basis vectors are Lie transported along one another, so that
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eg;ﬂef = eg:ﬂeg. We have
na;ﬁegef = mnaeg;ﬁef
= -—naeg;ﬂef
= ”a;ﬁegefv

and Eq. (3.34) follows. The symmetric property of the extrinsic curvature gives
rise to the relations
!
Kap = n(a;ﬁ)egeg = 5 (fngo,ﬁ)egef, (3.35)
and K, is therefore intimately related to the normal derivative of the metric tensor.
We also note the relation

K = h" Ky =nC,, (3.36)

which shows that K is equal to the expansion of a congruence of geodesics that
intersect the hypersurface orthogonally (so that their tangent vector is equal to n®
on the hypersurface), From this result we conclude that the hypersurface is convex
if K > O (the congruence is diverging), or concave if K < 0 (the congruence is
converging). '

We see that while kg, is concerned with the purely intrinsic aspects of a hy-
persurface’s geometry, Kgp is concerned with the extrinsic aspects — the way in
which the hypersurface is embedded in the enveloping spacetime manifold. Taken
together, these tensors provide a virtually complete characterization of the hyper-
surface.

3.5 Gauss—Codazzi equations
3.5.1 General form

We have introduced the induced metric A,p and its associated intrinsic covariant
derivative. A purely intrinsic curvature tensor can now be defined by the relation

c C _ c d
Ay = A%p = —RYy4upA”, (3.37)
which of course implies
¢ _ ¢ _ 71 ¢ Fit ¢ m
dab = Uapa — U dab T Donalan — T U (3.38)

The question we now examine is whether this three-dimensional Riemann tensor

can be expressed in terms of R}:sqﬁ — the four-dimensional version — evaluated
on 2.
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To answer this we start with the identity
(eg;ﬁef) el = (deed eKabno‘);yef
which follows immediately from Eq. (3.33). We first develop the left-hand side:

LHS = (eg;ﬁef)_ el

= ¢f,. ﬁyegef —[~eg.ﬁef_yef
= €a ﬁyegec —|—€a .B(F bC g gKanﬁ)

= e“ By b ﬁ V + r (Fcadeg - SKﬂdna) - SKbceg;ﬁnﬁ.
Next we turn to the right-hand side:

RHS = (F Gbed SKabna)_yez-l

! 4
= [ ab.cCq + Tapeq. },ec eKap on® .f-:Kabn“;VeC

F ab Ced "l_ I-‘ab( dC E’ FKan ) - gKab‘Clla - SK(,_[;I’I“VBC

We now equate the two sides and solve for e ' By eg el . Subtracting a similar expres-

v B n By TR : .
sion for ea;yﬁec e, gives — eqepec, the quantity in which we are interested.

After some algebra we find

.uﬁy

it a B Y _ pm " 7 noy w B
R C{ﬁ}/e(f €b eL _ “bCe”l + F(Kabic - Kaclb)n —[_ SKa[)n ;}’ec - SKaCn ,ﬁeb .

Projecting along eq,, gives

Raﬁ}’a egeferefi = Rﬂ‘de + S(Kad Kbc - KCICKbd)’ (339)

and this is the desired relation between Rupc¢ and the full Riemann tensor. Pro-
jecting instead along n,, gives

Ruaﬁ}’”#egefeg = Kapje — Kacpp- (3.40)

Equations (3.39) and (3.40) are known as the Gauss—Codazzi equations. They re-
veal that some components of the spacetime curvature tensor can be expressed in
terms of the intrinsic and extrinsic curvatures of a hypersurface. The missing com-
ponents are R q4vpn* eo’n"ef , and these cannot be expressed solely in terms of hgyp,

Kap, and related guantities.
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"3.5.2 Contracted form

The Gauss—Codazzi equations can also be written in contracted form, in terms of
the Einstein tensor Gog = Rag — %Rgaﬁ. The spacetime Ricci tensor is given by
Rop = g""Ryaug

= (gnu’n” + hm”en";e,‘;)vaﬁ
= eRyqvgn®n"” + ™" R qupelie,,
and the Ricci scalar is
R =g Rag
= (gn“nﬁ + h“begef)(evaﬁn“n” +HE™ Ryavpehe,)
= 28h“bRWvﬁn"”egn”ef + PR Ry upel el el
A little algebra then reveals the relations
—26Gagn®nf =R + e(K""K,p — K*?) (3.41)
and |
Gapegn® = K%, — K .. (3.42)

Here, °R = h?? R"™ . is the three-dimensional Ricci scalar. The importance of
Eqs. (3.41) and (3.42) lies with the fact that they form part of the Einstein field
equations on a hypersurface 3; this observation will be elaborated in the next sec-
tion. We note that Gug egeg , the remaining components of the Einstein tensor,
cannot be expressed solely in terms of A,p, Kqp, and related quantities.

3.5.3 Ricci scalar
We now complete the computation of the four-dimensional Ricci scalar. Qur start-

ing point is the relation

_ b ¢ e v f by mn o
R = 2eh" Ryqvgn'egn’e, +hh"™" R opet el e}fef,

which was derived previously. The first term is simplified by using the com-
pleteness relations (3.12) and the fact that vaﬁn“n“n”nﬁ = 0; it becomes
oI Raﬁn“nﬁ. Using the definition of the Riemann tensor, we rewrite this as

Raﬁn”nﬁ = —nO‘;O[ﬁn‘8 —l-na;ﬁanﬁ

= —(n"‘;anﬁ);ﬁ + no‘;o[n}ff/5 + (noiﬁnﬁ);a - no‘;ﬁnﬁ;a.
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In the second term of this last expression we recognize K2, where K = n® o 18
the trace of the extrinsic curvature. The fourth term, on the other hand, can be
expressed as

n"iﬁnﬁja = gﬁﬂgw”a:ﬁ”u;v

= (enPn® 4 BPMY(en®nY 4 h* )ng.gn .,
= (enfn* h‘B“)hwna;ﬁn“;v
= hP*R g, prysy
hbmhan”a;ﬁegefnu;ve;’ﬁen

— hbmhﬂﬂ Kﬂ_b K}nn

= Kb Kba

b

= KK .
In the second line we have inserted the completeness relations (3.12) and recalled
the notation A% = h“be"" ﬁ . In the third and fourth lines we have used the fact
that nny. g = %(n“na); g = O. In the sixth line we have substituted the definition
(3.31) for the extrinsic curvature. Finally, in the last line we have used the fact that
K.p 18 a symmetric three-tensor.

The previous manipulations take care of the first term in our starting expres-

sion for the Ricci scalar, The second term is simplified by substituting the Gauss—
Codazzi equations (3.39),

11“1’/1"’”Ruavﬁe”";eﬁe}leb = h“bhm”[Rmanb + e(KmpKan — KrruzKab)]
=R 4+ e(K¥Kap — K.
Putting all this together, we arrive at
R =R+ 8(K2 — K“bKab) + Ze(n‘fﬁnﬁ — nanff.ﬁ);a. (3.43)

This is the four-dimensional Ricci scalar evaluated on the hypersurface . This
result will be put to good use in Chapter 4.

3.6 Initial-value problem
3.6.1 Constraints

In Newtonian mechanics, a complete solution to the equations of motion requires
the specification of initial values for the position and velocity of each moving body.
In field theories, a complete solution to the field equations requires the specifica-
tion of the field and its time derivative at one instant of time.
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A similar statement can be made for general relativity. Because the Einstein
field equations are second-order partial differential equations, we would expect
that a complete solution requires the specification of gog and gug, at one instant
of time. While this is essentially correct, it is desirable to convert this decidedly
noncovariant statement into something more geometrical.

The initial-value problem of general relativity starts with the selection of a
spacelike hypersurface ¥ which represents an ‘instant of time. This hypersurface
can be chosen freely. On this hypersurface we place arbitrary coordinates ¥,

The spacetime metric 8o, When evaluated on ¥, has components that character-
ize displacements away from the hypersurfacc. (For example, g, is such a compo-
nent if ¥ is a surface of constant ¢.) These components cannot be given meaning in
terms of the geometric properties of ¥ alone. To provide meaningful initial values
for the spacetime metric, we must consider displacements within the hypersurface

only. In other words, the initial values for gep can only be the six components of

the induced metric hgyy, = gaf eéfef ; the remaining four components are arbitrary,

and this reflects the complete freedom in choosing the spacetime coordinates x®.

Similarly, the initial values for the ‘time derivative’ of the metric must be de-
scribed by a three-tensor that carries information about the derivative of the metric
in the direction normal to the hypersurface. Because Kap = %(fngaﬁ)effef , the
extrinsic curvature is clearly an appropriate choice,

The initial-value problem of general relativity therefore consists in specifying
two symmetric tensor fields, hyp, and K,p, on a spacelike hypersurface . In the
complete spacetime, b, is recognized as the induced metric on the hypersur-
face, while K, is the extrinsic curvature. These tensors cannot be chosen freely:
They must satisfy the constrains equations of general relativity. These are given by
Egs. (3.41) and (3.42), together with the Einstein field equations Gog = 87 Typ:

R+ K2 — K%K, = 167 Tapn®n? = 167p (3.44)
and
Kb~ Kq=8x Tupe®nf = 8xj, . (3.45)

The remaining components of the Einstein field equations provide evolution equa-
tions for hap and K,p; these will be considered in Chapter 4.

3.6.2 Cosmological initial values

As an example, let us solve the constraint equations for a spatially flat, isotropic,
and homogeneous cosmology. To sati sty these requirements the three-metric must
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take the form
ds? = a%(dx? + dy? - dz?).

where a is the scale factor, which is a constant on the hypersurface. Isotropy and
homogeneity also imply p = constant, j, = 0, and
|

Kap = 3 Khab,

where K is a constant. The second constraint equation is therefore trivially satis-
fied. The first one implies
2

167p = K2 — K%K = = K2,

Wl

and this provides the complete solutjon to the initial-value problem.

To recognize the physical meaning of this last equation, we use the fact that
in the complete spacetime, K = n? ., where n® is the unit normal to surfaces of
constant . The full metric is given by the Friedmann—Robertson—Walker form

ds? = —dr* 4 @*(1)(dx? + dy? 4 dz?),

so that ny = —0,¢ and K = 3a/a, where an overdot indicates differentiation with
respect to ¢, The first constraint equation is therefore equivalent to

3(afa)* = 8rp,

which is one of the Friedmann equations governing the evolution of the scale
factor.

3.6.3 Moment of time symmetry

We notice from the previous example that K,;, = O when & = 0, that is, the extrin-
sic curvature vanishes when the scale factor reaches a turning point of its evolution.
Because the dynamical history of the scale factor is time-symmetric about the time
t = tp at which the turning point occurs, we may call this time a moment of time
syminetry in the dynamical evolution of the spacetime. Thus, Ky = O at this mo-
ment of time symmetry.

’ Generalizing, we shall call any hypersurface ¥ on which K, = 0 a moment
of time symmetry in spacetime. Because K, is essentially the ‘time derivative’
of the metric, a moment of time symmetry corresponds to a turning point of the
metric’s evolution, at which its ‘time derivative’ vanishes. The dynamical history
of the metric is then ‘time-symmetric’ about . From Eq. (3.45) we see that a
moment of time symmetry can occur only if j, = 0 on that hypersurface.
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3.6.4 Stationary and static spacetimes

A spacetime Is said to be stationary if it admits a timelike Killing vector ¢®. This
means that in a coordinate system (¢, x%) in which % = 8%, the meiric does not
depend on the time coordinate 7: gop ; = 0 (see Section 1.5). For example, a rotat-
I0g star gives rise to a statjonary spacetime if its mass and angular velocity do not
change with time.

A stationary spacetime is also static if the metric does not change under a time
reversal, 1 — —z. For example, the spacetime of a rotating star is not static because
a time reversal changes the direction of rotation. In the specified coordinate system,
invariance of the metric under a time reversal implies gr, = 0. This, in turn, implies
that the Killing vector is proportional to a gradient: t = 81 9yt. Thus, a spacetime
is static if the timelike Killing vector field is hypersurface orthogonal.

We may show that if a spacetime is static, then K, = 0 on those hypersurfaces
Z; that are orthogonal to the Killing vector; these hypersurfaces therefore represent
moments of time symmelry. If ¥ is orthogonal to ¢%, then its unit normal must
be given by ng = 1y, where 1 /% = —1%,. This implies that ny.g = L1y g +
fatt g, and n(q. ) = to 1, gy because 1y is a Killing vector. That Kz = O follows
immediately from Eq. (3.35) and the fact that ¢, is orthogonal to es.

3.6.5 Spherical space, moment of time symmetry
As asecond example, we solve the constraint equations for a spherically symmetric
spacetime at a moment of time symmetry. The three-metric can be expressed as

ds? = [1 = 2m(r)/r]”" dr? + r2d92,

for some function m(r); to enforce regularity of the metric at » = 0 we must im-
pose m(0) = m'(0) = 0, with a prime denoting differentiation with respect to r.
For this metric the Ricci scalar is given by 3R = 4m’/r?. Because Kqp = O at
a motment of time symmetry, Bq. (3.44} implies 16mp = 3R. Solving for m(r)
returns

,
m(r)::] 4r o’y dr.
0

This states, loosely speaking, that m(r) is the mass-energy contained inside a
sphere of radius r, at the selected moment of time symmetry.

3.6.6 Spherical space, empty and flat

We now solve the constraint equations for a spherically symmetric space empty of
matter (so that p = 0 = j*). We assume that we can endow this space with a flat
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metric, so that
hap dy® dy? = dr? + 12402,

We also assume that the hypersurface does not represent a moment of time Sym-
metry. While the flat metric and K,; = 0 make a valid solution to the constraints,
this is a trivial configuration — a flat hypersurface in a flat spacetime.

Let ny = 9,r be a unit vector that points radially outward on the hypersurface.
The fact that Kop is a spherically symmetric tensor means that it can be decom-
posed as

Kap = K1 (r)ngnp + Ko(r)(hapy — nanp),

with Ky representing the radial component of the extrinsic curvature, and K
the angular components. In the usual spherical coordinates (r, @, ¢) we have
K¢, = diag(K,, Ky, K3), which is the most general expression admissible under
the assumption of spherical symmetry,

Because the space is empty and flat, the first constraint equation reduces to
K? — K%K = 0, an algebraic equation for K1 and K5. This gives us the con-
dition (2K + K2)K2 = 0. Choosing K, = 0 would eventually return the trivial
solution Kgp, = 0. We choose instead K, = —2K; and re-express the extrinsic cur-
vature as

2
Kap = K(r)(g hab — nanb),

where K = —3K] is the sole remaining function to be determined.
To find K (r) we turn to the second constraint equation, K’;Ib — K , = 0, which
becomes

)

3 Kot (Kn%y + K pn"yng + Kngpn® = 0.

With K , = K'n, (with a prime denoting differentiation with respect to ), n”j p =
2/r, and !’tazbnb = 0 (because the radial curves are geodesics of the hypersurface),
we arrive at 2r K’ + 3K = 0. Integration yields

K (r) = Ko(ro/r)*"?,

with K¢ denoting the value of K at the arbitrary radius rg.

We have found a nontrivial solution to the constraint equations for a spherical
Space that is both empty and flat. The physical mecaning of this configuration will
be revealed in Section 3.13, Problem 1.
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3.6.7 Conformally-flat space

A powerful technique for generaling solutions to the constraint equations consists
of writing the three-metric as

hab = W45Cfba

where Yr(y*} is a scalar field on the hypersurface. Such a metric is said to be
conformally related to the flat metric, and the space is said to be conformally flat.
For this metric the Ricci scalar is 3R = —8¥ V2, and Eq. (3.44) takes the form
of Poisson’s equation,

v2 ’ﬁ = —znpeffs

where

Peff = 1#5[0 + 1_61; (KabKab - Kz)]
is an effective mass density on the hypersurface. At a moment of time symmetry
this simplifies to pegr = ¥, and one possible strategy for solving the constraint
is t0 specify pesr, solve for 4, and then see what this produces for the actual mass
density p. If p = O at the moment of time symmetry, then the constraint becomes
Laplace’s equation V24 = 0, and this admits many interesting solutions, A well-
known example is Misner’s (1960) solution, which describes two black holes about
to undergo a head-on collision. This initial data set has been vigourously studied
by nuimerical relativists.

3.7 Junction conditions and thin shells

The following situation sometimes presents itself: A hypersurface ¥ partitions
spacetime into two regions ¥ T and ¥ — (Fig. 3.5). In ¥ * the metric is 8;5’ and
1t is expressed in a system of coordinates xY. In ¥~ the metric is 84+ and it is
expressed in coordinates x®, We ask: What conditions must be put on the metrics to
ensure that ¥ + and ¥ ~ are joined smoothly at , so that the union of g;"ﬁ and g;ﬁ
forms a valid solution to the Rinstein field equations? To answer this question is not
entirely straightforward because in practical situations, the coordinate systems x§
will often be different, and it may not be possible to compare the metrics directly.
To circumvent this difficulty we will endeavour to formulate junction conditions
that involve only three-tensors on ¥. In this section we will assume that & is
either timelike or spacelike; we will return to the case of a null hypersurface in
Section 3.11.
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3.7.1 Notation and assumptions

We assume that the same coordinates y“ can be installed on both sides of the
hypersurface, and we choose n®, the unit normal to ¥, to point from ¥ ~ to
vt We suppose that a continuous coordinate system x®, distinct from x%, can
be introduced on both sides of the hypersurface, These coordinates overlap with
x§ in an open region of ¥ * that contains %, and they also overlap with x? in
an open region of ¥~ that contains .. (We introduce these coordinates for our
short-term convenience only; the final formulation of the junction conditions will
not involve them.)

We imagine X to be pierced by a congruence of geodesics that intersect it
orthogonally. We take ¢ to denote proper distance (or proper time) along the
geodesics, and we adjust the parameterization so that £ = Q when the geodesics
cross the hypersurface; our convention is that £ is negative in ¥~ and positive in
¥+, We can think of ¢ as a scalar field: The point P identified by the coordinates
x% is linked to = by a member of the congruence, and £(x*) is the proper distance
(or proper time) from X to P along this geodesic. Our construction implies that a
displacement away from the hypersurface along one of the geodesics is described
by dx® = n™ d¢, and that

Ny = 68, (3.46)

we also have n%n, = ¢,
We will use the language of distributions. We introduce the Heaviside distribu-

tion ©(£), equal to +1 if £ > 0, 0if £ < 0, and indeterminate if £ — 0. We note
the following properties:

%) =0(0), W1 =0, a‘-}@c@ ~ 5(0),

where & (£) is the Dirac distribution. We also note that the product &(£)8(£) is not
defined as a distribution.
The following notation will be useful:

[Al= A Yl - A ;.

Figure 3.5 Two regions of spacetime joined at a common boundary.
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where A is any tensorial quantity defined on both sides of the hypersurface; [A] is
therefore the jump of A across X. We note the relations

[n*] =[e5] =0, (3.47)

where e = 3x%/3y“. The first follows from the relation dx® = 1% d¢ and the con-
tinuity of both £ and x* across X; the second follows from the fact that the coor-
dinates y are the same on both sides of the hypersurface.

3.7.2 First junction condition

We begin by expressing the metric gqg, in the coordinates x%, as a distribution-
valued tensor:

gap = O(L) gy + O (=) gop, (3.48)

where gi:ﬁ is the metric in ¥ % expressed in the coordinates x*. We want to know
if the metric of Eq. (3.48) makes a valid distributional solution to the Einstein field
equations. To decide we must verify that geometrical quantities constructed from
gup, such as the Riemann tensor, are properly defined as distributions. We must
then try to eliminate, or at least give an interpretation to, singular terms that might
arise in these geometric quantities.

Differentiating Eq. (3.48) yields

gapy = O g3p ., +O(—0) g, +£8(0)[gaplny,

where Eq. (3.46) was used. The last term is singular and it causes problems when
we compute the Christoffel symbols, because it generates terms proportional to
Q(£)3(¢). If the last term were allowed to survive, the connection would not be
defined as a distribution and our program would fail. To eliminate this term we
impose continuity of the metric across the hypersurface: [ gopl = 0. This statement
holds in the coordinate system x only. However, we can easily turn this into a
coordinate-invariant statement: 0 = [gaﬁ]egef = [gaﬁegef I; this last step follows
by virtue of Eq. (3.47). We have obtained

[hab] =0, (3.49)

the statement that the induced metric must be the same on both sides of . This
is clearly required if the hypersurface is to have a well-defined geometry. Equa-
tion (3.49) will be our first junction condition, and it is expressed independently
of the coordinates x* or x§. Coordinate independence explains why Eq. (3.49)
produces only six conditions while the original statement [gap] = O contained ten:
The mismatch corresponds to the four coordinate conditions [x®] = 0.
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3.7.3 Riemann tensor

To find the second junction condition requires more work: we must calculate the
distribution-valued Riemann tensor. Using the results obtained thus far, we have
that the Christoffel symbols are

o . 4w N -
gy =0T, +6( E)rﬁ‘;,

where ng‘; are the Christoffel symbols constructed from gfﬁ. A straightforward
calculation then reveals

Py = OO T s + OO 5 +e5O[T%, ]ns,

and from this follows the Riemann tensor:

%5 = OL) R*;;a + OO Ry s+ 8(0)A%Y 5, (3.50)
where
A“ﬁ},a = 8([[‘”}33];1}, — [Faﬁy]n,g). (3.5hH

We see that the Riemann tensor is properly defined as a distribution, but the §-
function term represents a curvature singularity at £. Our second junction con-
dition will seek to eliminate this term. Failing this, we will see that a physical
interpretation can nevertheless be given to the singularity. This is our next topic.

3.7.4 Surface stress-energy tensor

Although they are constructed from Christoffel symbols, the quantities A"’ﬁ ,s form
a tensor because the difference between two sets of Christoffel symbols is a tenso-
rial quantity (see Section 1.2). We would like to find an explicit expression for this
tensor.

The fact that the metric is continuous across ¥ in the coordinates x® implies
that its tangential derivatives also must be continuous. This means that if SoB.y 18
to be discontinuous, the discontinuity must be directed along the normal vector n?.
There must therefore exist a tensor field Kop Such that

[gep.y] = kapny; (3.52)
this tensor is given explicitly by

Kap = £[gop.y In”. (3:53)
Equation (3.52) implies

1
] aﬂy] =5 (’fofeny +xS,ng — Kpyn®),
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and we obtain
o € ¢4 04 ¢4 ¢4
s = E(lcanﬁny — &% ngns — kpsn®ny + kpyn®ns).

This is the é-function part of the Riemann tensor.
Contracting over the first and third indices gives the 8-function part of the Ricci
tensor:

£
Aop = AI;M,B ) > (fuan®ng + rpgntng — kngng — exup).

where k = «%,. After an additional contraction we obtain the §-function part of the
Ricci scalar,

A= A% = E(K‘wn“n” — £K).

With this we form the §-function part of the Einstein tensor, and after using the
Einstein field equations we obtain an expression for the stress-energy tensor:

Tog =) T, -{» Q0T ap T 3(E)Sap, (3.54)

where 87 Sug = Agp — 5 Agap- On the right-hand side of Eq. (3.54) the first and
second terms represent the stress-energy tensors of regions ¥ * and ¥ ~, respec-
tively. The §-function term, on the other hand, comes with a clear interpretation:
It is associated with the presence of a thin distribution of matter — a surface layer,
or a thin shell — at ¥; this thin shell has a surface stress-energy tensor equal
to Seg.

3.7.5 Second junction condition

Exphicitly, the surface stress-energy tensor is given by
1678 Sap = Kyantng + xugntng — kngng — exgp — (kpyntn’ — E‘K)gaﬁ.

From this we notice that Sqg is tangent to the hypersurface: Sygn® = 0. It therefore
admits the decomposition

S = §9b o2 P (3.55)
where S;p = § ﬁeffef: 1s a symmetric three-tensor. This is evaluated as follows:
]6.7[501; == “Kaﬁegelfj - S(Ku’yn'u'nv - FK)hab

B
= —Kaply ), — Kyy(g"" — h'"" ek e Vhap + hap

Kaﬁeaef + hrn"’c‘uvenl H hab
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On the other hand we have
[”a;ﬁ] = _[r]:xﬁ]ny
1

= ) (’Cya”ﬂ + Kyphg — ’Caﬁ”y)”y

I
=3 (s;caﬁ — Kyghpn? — Kyﬁnany),
which allows us to write

[Kab] = ["a:ﬁ]egef = %"aﬁf’geg-

Collecting these results we obtain

&
Sub = ‘—gj}‘ ([Kab] - [K]hab), (3.56)

which relates the surface stress-energy tensor to the jump in extrinsic curvature
from one side of X to the other. The complete stress-energy tensor of the surface
layer is

TP = 5(6) S9Pe2ef (3.57)

We conclude that a smooth transition across % requires [K,p] = 0 — the extrinsic
curvature must be the same on both sides of the hypersurface. This requirement
does more than just remove the 8-function term from the Einstein tensor: In Sec-
tion 3.13, Problem 4 you will be asked to prove that [K,,] = 0 implies A“ﬁya =0,
which means that the full Riemann tensor is then nonsingular at 3.

The condition [Kgp] = 0 is our second junction condition, and it is expressed
independently of the coordinates x® and xg. If this condition is violated, then
the spacetime is singular at X, but the singularity comes with a sound physical
interpretation: a surface layer with stress-energy tensor 7 gﬁ is present at the hy-
persurface.

3.7.6 Summary

The junction conditions for a smooth joining of two metrics at a hypersurface
(assumed not to be null) are

[hap] = [Kap] = 0.

If the extrinsic curvature is not the same on both sides of ¥, then a thin shell with
surface stress-energy tensor

Sap = === ([Kan] ~ [K Jhab
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is present at X. The complete stress-energy tensor of the surface layer is given
by Eq. (3.57) in the continuous coordinates x%, In the coordinate system x§ used

originally in 7 ¥, it is
9x2\ [ 9xP
T = st [ =) [ =) 5(¢).
= ay® J\ 0yb )

This follows from Eq. (3.57) by a simple coordinate transformatton from x“ to x§ ;
such a transformation leaves both £ and S unchanged.

This formulation of the junction conditions is due to Darmois (1927) and Israel
(1966). The thin-shell formalism is due to Lanczos (1922 and 1924) and Israel
(1966). An extension to null hypersurfaces will be presented in Section 3.11.

3.8 Oppenheimer—-Snyder collapse

In 1939, J. Robert Oppenheimer and his student Hartland Snyder published the first
solution to the Einstein field equations that describes the process of gravitational
collapse to a black hole. For simplicity they modelled the collapsing star as a spher-
ical ball of pressureless matter with a uniform density. (A perfect fluid with neg-
ligible pressure is usually called dust.) The metric inside the dust is a Friedmann—
Robertson—Walker (FRW) solution, while the metric outside is the Schwarzschild
solution (Fig. 3.6). The question considered here is whether these metrics can be
joined smoothly at thcir common boundary, the surface of the collapsing star,

The metric inside the collapsing dust (which occupies the region %" ") is given
by

ds? = —dr? + a?‘(r)(d)(2 + sin? x sz), (3.58)

¥+ . Schwarzschild

Figure 3.6 'The Oppenheimer—Snyder spacetime.
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where T is proper time on comoving world lines (along which x, 8, and ¢ are all
constant), and a(r) is the scale factor. By virtue of the Einstein field equations,
this satisfies

8t 5
= H3—— pa-, (359)

where an overdot denotes differentiation with respect to 7. By virtue of energy-
momentum conservation in the absence of pressure, the dust’s mass density p
satisfies

a*+1

3
pa3 = constant = — @y, (3.60)
8r

where amax is the maximum value of the scale factor. The solution to Egs. (3.59)
and (3.60) has the parametric form

a(n) = %amax(l +cosn), t(n) = %amax(n + sinn);

the collapse begins atn = 0 whenag = Gmax, and itends at n = 7 whena = 0. The
hypersurface ¥ coincides with the surface of the collapsing star, which is located
at X = xo 1n our comoving coordinates.

The metric outside the dust (in the region ¥ *) is given by

dst = —fd* + 7' dr® + 2402, fF=1- 2M /¥, (3.61)

where M is the gravitational mass of the collapsing star. As seen from the out-
side, % is described by the parametric equations r = R(7), t = T (1), where 7 is
proper time for observers comoving with the surface. Clearly, this is the same ©
that appears in the metric of Eq. (3.58).

It is convenient to choose y* = (t, 8, ¢b) as coordinates on . It follows that
e? = u“, where u® is the four-velocity of an observer comoving with the surface
of the collapsing star.

We now calculate the induced metric., As seen from ¥ ~ the metric on 5 is
ds% = —dr® + az(r) sin’ X0 aa?.
As seen from ¥ T, on the other hand,
dsg = —(FT% — F7'R?) ar? + R*(r) d2,

where F'=1—2M/R. Because the induced metric must be the same on both
sides of the hypersurface, we have

R(r) = a(r)sinye, FI?>—F 'R* =1, (3.62)
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The first equation determines R(7) and the sccond equation can be solved for 7'

FT =VR2 4 F = (R, R). (3.63)

This equation can be integrated for 7 (z) and the motion of the boundary in ¥ + g
completely determined.

The unit normal to ¥ can be obtained from the relations ngu® =0, nyn® =
1. As seen from Y, u 3, = or and ng dx* = ady; we have chosen nX > 0
sO that n* is directed toward ¥ *+. Ag seen from ¥ t, U 8y = T8+ R 9, and

ntdx® = —Rdr + T dr, with a consistent choice for the sign.
The extrinsic curvature jg defined on either side of by Kqp = na;ﬁegeb . The
nonvanishing components are Kir =ng.puuf = —nau"fﬁuﬁ = —a%ny (where

a® is the acceleration of an observer comoving with the surface), Koy = ng.q, and
Kpp = Rgg. A straightforward calculation reveals that as seen from ¥

Ki.=0, K% = K?, =a"" cot xo; (3.64)

the first result follows immediately from the fact that the comoving world lines of
a FRW spacetime are geodesics. As seen from % +

K =B/R, K9 =K® =p/R, (3.65)

where B(R, R) is defined by Eq. (3.63).

To have a smooth transition at the surface of the collapsing star, we demand that
Kqp be the same on both sides of the hypersurface. It is therefore necessary for
u’ to satisfy the geodesic equation (@ = 0)in ¥ *+, It is easy to check that the
geodesic equation produces R2 + F — £ 2, where £ = —u, is the (conserved) en-
€1gy parameter of the comoving observer. This relation implies 8 = E, and the fact
that 8 is a constant enforcgs K ir = 0, as required. On the othey hand, [K %] =0
gives cot xo/a = B/R = E/(asin xg), or

B = E = cos xy. (3.66)
We have found that the requirement for a smooth transition at is that the hy-
persurface be generated by geodcsics of both ¥~ and ¥ *, and that the parameters

E and yq be related by Eq. (3.66). With the help of Egs. (3.59), (3.62), and (3.63)
we may turn Eq. (3.66) into

4
M= -;-pRB, (3.67)

which equates the gravitational mass of the collapsing star to the product of its
density and volume. This relation has an immediate intuitive meaning, and it neatly
summarizes the complete solution to the Oppenheimer—Snyder problem.
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3.9 Thin-shell collapse

As an application of the thin-shell formalism, we consider the gravitational col-
lapse of a thin spherical shell. We assume that spacetime is flat inside the shell
(in % 7). Outside (in ¥ *), the metric is necessarily a Schwarzschild solution (by
virtue of the spherical symmetry of the matter distribution). We assume also that
the shell is made of pressureless matter, in the sense that its surface stress-energy
tensor is constrained to have the form

S = o uul, (3.68)

in which o is the surface density and u® the shell’s velocity field. Qur goal is to
derive the shell’s equations of motion under the stated conditions.
Using the results derived in the preceding section, we have

Ki.=B+/R,
Kio = K%, = B+/R,

ﬁ+=\/}i‘2+1_2M/R,
B-=VR? 41,

where R(t) is the shell’s radius, and M its gravitational mass. As we did before,
we use (7, 8, ¢b) as coordinates on £; in these coordinates w? — dy“/dt. Equation
(3.56) allows us to calculate the components of the surface stress-energy tensor,
and we find

By — B- o _ Br—B-  By—p_
— = 8§t =51 T 0=275" = —.
=T TR °T T8xR ' 8k
The second equation can be integrated immediately, giving By — B)R =
constant. Substituting this into the first equation yields 47 R%20 = —constant.
We have obtained
47 R%*0 = m = constant (3.69)

and B_ — B, = m/R. The first equation states that m, the shell’s rest mass, stays
constant during the evolution. Squaring the second equation converts it to

2

M:m,/1+fé2_%, (3.70)

which comes with a nice physical interpretation. The first term on the right-hand
side is the shell’s relativistic kinetic energy, including rest mass. The second term
is the shell’s binding energy, the work required to asscmble the shell from its dis-
persed constituents. The sum of these is the total (conserved) energy, and this is
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equal to the shell’s gravitational mass M. Equation (3.70) provides a vivid illus-
tration of the general statement that all forms of energy contribute to the total
gravitational mass of an isolated body.

Equations (3.69) and (3.70) are the shell’s equations of motion. It is interesting
to note that when M < m, the motion exhibits a turning point at R = Rp;ax =
m?/[2(m — M)]: An expanding shell with M < m cannot escape from its own
gravitational pull,

3.10 Slowly rotating shell

Our next application of the thin-shell formalism is concerned with the spacetime
of a slowly rotating, spherical shell. We take the exterior metric to be the slow-
rotation limit of the Kerr solution,

4M
ds? = —fde? + £~V dr? + 2 d2? — Ta sin20drdg.  (3.71)

Here, f =1~ 2M/r with M denoting the shell’s gravitational mass, and a =
J/M < M, where J is the shell’s angular momentum. Throughout this section
we will work consistently to first order in a.

The metric of Eq. (3.71) is cut off at r = R, which is where the shell is located.
As viewed from the exterior, the shell’s induced metric is

4M
ds% = —(1 — 2M/R) di® + R*dQ* — —R-‘l sin? 0 dr dg.

It is possible to remove the off-diagonal term by going to a rotating frame of ref-
erence. We therefore introduce a new angular coordinate v related to ¢ by

W= ¢ — Qu, (3.72)

where €2 is the angular velocity of the new frame with respect to the inertial frame
of Eq. (3.71). We anticipate that 2 will be proportional to a, and this allows us to
approximate d¢? by dy? + 2 dr dr. Substituting this into ds% returns a diagonal
metric if €2 is chosen to be

2Ma
Q= 3 (3.73)
The induced metric then becomes
hap dy® dy? = —(1 — 2M/R) dt®> + R%(d6? + sin? 6 dy/?). (3.74)

It is now clear that the shell has a spherical geometry. As Eq. (3.74) indicates, we
will use the coordinates y* = (¢, 8, 1) on the shell.
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We take spacetime to be flat inside the shell, and we write the Minkowski metric
in the form

ds? = —(1 — 2M/R) de* + dp* + p*(d6? + sin? 0 dy?), (3.75)

where p is a radial coordinate. This metric must be cut off at p = R and joined
to the exterior metric of Eq. (3.71). The shell’s intrinsic metric, as computed from
the interior, agrees with Eq. (3.74). Continuity of the induced metric is therefore
established, and we must now turn to the extrinsic curvature.

We first compute the extrinsic curvature as seen from the shell’s exterior. In
the metric of Eq. (3.71), the shell’s unit normal is ny = f~1/25,r. The parametric
equations of the hypersurface are t = ¢, = 8, and ¢ = ¥ + S, and they have
the generic form x® = x%(y®). These allow us to compute the tangent vectors
eq = dx%/ay® and we obtain e¥3, = 3, + 29y, eg 9y = 89, and ef;,a,x = Jy. From
all this we find that the nonvanishing components of the extrinsic curvature are

M
K = :
t T RLJTZ2MJR
K - 3Masin? @
v RAL/T—2M/R’
,  3M
kY =27% /T-2MJR,

R4
1
K =~V 1-2M/R = K",

As now seet from the shell’s interior, the unit normal is n, = 3, p and the tangent
vectors are ef' dy = d;, e 0, = 8y, and eir’)u. = dy . From this we find that K% =
1/R=K ‘ﬁf are the only two nonvanishing components of the extrinsic curvature.
This could have been obtained directly by setting M = 0 in our previous results.

We have a discontinuity in the extrinsic curvature, and Eq. (3.56) allows us to
calculate §7°, the shell’s surface stress-energy tensor. After a few lines of algebra
we obtain

S (1 /1= zM/R),

_47rR
. 3Masin? @
V' 8w R2/T—2M/R’
3Ma
sY = —o J1—2M/R,

o _ 1= M/R~ JT—2M]R _ g
o 87 Ry1—2M/R v
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These results give us a complete description of the surface stress-energy tensor,
but they are not terribly illuminating. Can we make sense of this mess?
We will attempt to cast $20 in a perfect-fluid form,

S = ouu® + p(h®t + w7, (3.76)

in terms of a velocity field 19, a surface density o, and a surface pressure p. How
do we find these quantities? First we notice that Eq. (3.76) implies S‘j,ub = —ou’,
which shows that 4 is a normalized eigenvector of the surface stress-energy ten-
sor, with eigenvalue —o. This gives us three equations for three unknowns, the
density and the two independent components of the velocity field. Once those have
been obtained, the pressure is found by projecting $9° in the directions orthogonal
to u“. The rest is just a matter of algebra.

We can save ourselves some work if we recognize that the shell must move
rigidly in the v direction, with a uniform angular velocity w. Its velocity vector
can then be expressed as

u® =y (® + 0y, (3.77)

where 17 = 8y?/8¢ and ¢ = 0y /3y are Killing vectors of the induced metric
hab. In Bq. (3.77), @ = dy//dt is the shell’s angular velocity in the rotating frame
Of Eq. (3.72), and y is determined by the normalization condition fpu%u? — —1.
We can simplify things further if we anticipate that @ will be proportional to a. For
example, neglecting O (w?) terms when normalizing u? gives

I
YE TR

With these assumptions, we find that the eigenvalue equation produces @ =
—S"f/(—S‘, + Slf;f) and o = —§*. After simplification the first equation becomes

(3.78)

_ 6Ma 1 ~2M/R

R (1= yT=2M/R)(1 +3/T - 2M/R)’

w

(3.79)

and the second is

o = ZE:E (1- VI-2M/R). (3.80)

We now have the surface density and the velocity field. The surface pressure
can easily be obtained by projecting S°? in the directions orthogonal to u?:
P = 3(hab + uup)S® = 1(S + &), where S = hapS®P. This gives p = 8%, and

11— M/R— JT 2R
P T SaRJT R

(3.81)
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The shell’s material is therefore a perfect fluid of density o, pressure p, and angular
velocity w. When R is much larger than 2M, Egs. (3.79)—(3.81) reduce to w ~~
3a/(2R%), 0 >~ M/(4n R?), and p ~ M2 /(16 R3), respectively.

The spacetime of a slowly rotating shell offers us a unique opportunity to ex-
plore the rather strange relativistic effects associated with rotation. We conclude
this section with a brief description of these effects.

The metric of Eq. (3.71) is the metric outside the shell, and it is expressed in
a coordinate system that goes easily into a Cartesian frame at infinity. This is the
frame of the ‘fixed stars,’ and it is this frame which sets the standard of no rotation.
The metric of Eq. (3.75), on the other hand, is the metric inside the shell, and
it is expressed in a coordinate system that is rotating with respect to the frame
of the fixed stars. The transformation is given by Eq. (3.72), and it shows that
an observer at constant ¢ moves with an angular velocity deg /dr = €. Inertial
observers inside the shell are therefore rotating with respect to the fixed stars, with
an angular velocity Q;, = 2. According to Eq. (3.73), this is

2Ma
Qin = R3 . (3.82)

This angular motion is induced by the rotation of the shell, and the effect is known
as the dragging of inertial frames. It was first discovered in 1918 by Thirring and
Lense.

The shell’s angular velocity w, as computed in Eq. (3.79), is measured in the
rotating frame. As measured in the nonrotating frame, the shell’s angular velocity
i8 Qghett = dep/dr = dy//dr + Q = @ -+ Q. According to Eqs. (3.79) and (3.82),
this is

o _ 2Ma 1 +2/T=2M/R
shell = —3 (l_m)(l+3m.

(3.83)

When R is much larger than 2M, Qin/Qghen >~ 4M/(3R), and the internal ob-
servers rotate at a small fraction of the shell’s angular velocity. As R approaches
2M, however, the ratio approaches unity, and the internal observers find them-
selves corotating with the shell. This is a rather striking manifestation of frame
dragging. (The phrase ‘Mach’s principle’ is often attached to this phenomenon.)
This spacetime, admittedly, is highly idealized, and you may wonder whether coro-
tation could ever occur in a realistic situation. You will see in Chapter 5 that the

answer is yes: A very similar phenomenon occurs in the vicinity of a rotating black
hole,
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3.11 Null shells

We saw in Sections 3.1 and 3.2 that the description of null hypersurfaces involves
interesting subtleties, and we should not be surprised to find that the same is true
of the description of null surface layers. Our purpose here, in the last section of
Chapter 3, is to face these subtleties and extend the formalism of thin shells, as
developed in Section 3.7, to the case of a null hypersurface. The presentation given
here is adapted from Barrabds and Israel (1991).

3.11.1 Geometry

As we did in Section 3.7, we consider a hypersurface ¥ that partitions spacetime
into two regions ¥  in which the metric is gjﬁ when expressed in coordinates x .
Here we assume that the hypersurface is null, and our convention is such that ¥ ~
is in the past of ¥, and ¥ * in its future. We assume also that the hypersurface is
singular, in the sense that the Riemann tensor possesses a 8-function singularity at
2i. We will characterize the Ricei part of this singular curvature tensor, and relate
it to the surface stress-energy tensor of the shell. (We shall have nothing to say
about the interesting physical effects associated with the Weyl part of the singular
curvature tensor,)
As we did in Section 3.1.2, we install coordinates

Y =, 6%

on the hypersurface, and we assume that these coordinates are the same on both
sides of X. We take X to be an arbitrary parameter on the null generators of the
hypersurface, and we use 64 to label the generators. It is possible to choose A to
be an affine parameter on one side of the hypersurface. But as we shall see below,
in general it is not possible to make A an affine parameter on both sides of X.

As seen from ¥ *,  is described by the parametric relations x§ (y%), and using
these we can introduce tangent vectors €%, = 3x%/8y® on each side of the hyper-
surface. These are naturally segregated into a null vector k% that is tangent to the
generators, and two spacelike vectors e’ 4, that point in the directions transverse to
the generators. Explicitly,

gx® ax
k% = = ¥ o . 84
( GY )5,4 o “a (BQA)A 3.89

(Here and below, in order to keep the notation simple, we refrain from using the
"=’ label in displayed equations; this should not create any confusion.) By con-
struction, these vectors satisfy

kak® = 0 = kye® . (3.85)
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The remaining inner products
oag(h, %) = gop eieg (3.86)
do not vanish, and we assume that they are the same on both sides of X:
[O’AB] = 0. (3.87)
We recall from Section 3.1.3 that the two-tensor o4 p acts as a metric on X,
dst = oy do? d65,

and the condition (3.87) ensures that the hypersurface possesses a well-defined
intrinsic geometry.

As we did in Section 3.1.3, we complete the basis by adding an auxiliary null
vector N§ that satisfies

NQ’ND,’ - 0, Naka = —1, Naei = 0. (3.88)
The completed basis gives us the completeness relations
g% = kNP — NokE 4 oAB S el (3.89)

for the inverse metric on either side of ¥ (in the coordinates x%); o 4% is the inverse
of oz g, and it is the same on both sides.

To complete the geometric setup we introduce a congruence of geodesics that
cross the hypersurface. In Section 3.7, in which X was either timelike or space-
like, the congruence was selected by demanding that the geodesics intersect the
hypersurface orthogonally: The vector field # tangent to the congruence was set
equal (on ¥) to the normal vector n%. When the hypersurface is null, however, this
requirement does not produce a unique congruence, because a vector orthogonal
to k% can still possess an arbitrary component along k“.

We shall have to give up on the idea of adopting a unigue congruence. An im-
portant aspect of our description of null shells is therefore that it involves an ar-
bitrary congruence of timelike geodesics intersecting X. This arbitrariness comes
with the lightlike nature of the singular hypersurface, and it cannot be removed.
It can, however, be physically motivated: The arbitrary vector field u% that enters
our description of null shells can be identified with the four-velocity of a family
of observers making measurements on the shell; since many different famnilies of
observers could be introduced to make such measurements, there is no reason to
demand that the vector field be uniquely specified.

We therefore introduce a congruence of timelike geodesics y that arbitrarily in-
tersect the hypersurface. The geodesics are parameterized by proper time 7, which
is adjusted so that T = 0 when a geodesic crosses %; thus,7 < 0in¥ " andt > 0
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in ¥ ¥ The vector tangent to the geodesics is ug, and a displacement along a
mcmber of the congruence is described by

dx® = u* dr. (3.90)

To ensure that the con gruence is smooth at the hypersurface, we demand that 14 be
“the same’ on both sides of 3. This means that uy ey, the tangential projections of
the vector field, must be equal when evaluated on either side of the hypersurface:

[—uak“] =0= [uae‘}{]. (3.91)

If, for example, u“ is specified in ¥ ~, then the three conditions (3.91) are suf-
ficient (together with the geodesic equation) to determine the three independent
components of u% in ¥ +. We note that —ug N%, the transverse projection of the
four-velocity, is allowed to be discontinuous at 2.

The proper-time parameter on the timelike geodesics can be viewed as a scalar
field 7(x3) defined in a neighbourhood of X Select a point x§ off the hypersurface
and locate the unique geodesic ¥ that connects this point to : the value of the
scalar field at x{ is equal to the proper-time parameter of thig geodesic at that
point. The hypersurface ¥ can then be described by the statement

‘ T(x%) =0,
and its normal vector k will be proportional to the gradient of T(x%) evaluated at
2. It is easy to check that the expression

ko = ~(—kyut) (3.92)

is compatible with Eq. (3.90). We recall that the factor —kuu” in Eq. (3.92) is
continuous across ¥

3.11.2 Surface stress-energy tensor

As we did in Section 3.7, we introduce for our short-term convenience a continy-
ous coordinate system x*, distinct from x¥, in a neighbourhood of the hypersur-
face; the final formulation of our null-shell formalism will be independent of these
coordinates. We express the metric as a distribution-valued tensor:

fop = O(7) gy + O(—1) g,
wherc gj}ﬂ (x#) is the metric in ¥ +. We assume that in these coordinates, the met-
ric is continuous at X: [g0g] = 0; Eq. (3.87) is compatible with this requirement.
We also have [k] = [e}] =[N"] = [u”] = 0. Differentiation of the metric pro-
ceeds as in Scctions 3.7.2 and 3.7.3, except that we now write 7 instead of £, and
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we use Eq. (3.92) to relate thc gradient of 7 to the null vector k. We arrive at a
Riemann tensor that contains a singular part given by

Re'gys = *(_ku”ﬂ)_] ([I“’ﬁa]k}, - [I‘“ﬁy]ka)a(r), (3.93)

where [I’“ﬂy] 1s the jump in the Christoffel symbols across .

In order to make Eq. (3.93) more explicit we must characterize the discontin-
uous behaviour of 8up,,- The condition [gyg] = 0 guarantees that the tangential
derivatives of the metric are continuous:

[Qap.y kY =0 = [gug,, Jeb.

The only possible discontinuity is therefore in gug,, NV, the transverse derivative
of the metric. In view of Eq. (3.88) we conclude that there exists a tensor field y,g
such that

[gep.v ] = —Vepky- (3.94)

This tensor is given explicitly by yug = lgag.,, JN7, and it is now easy to check
that

[0 4 ] [0 4 o o
[ ﬁ}’] = -E(yﬂky -+ yykﬁ — yﬁyk ) (395)
Substituting this into Eq. (3.93) gives
a ! “1( o
Ry'gys = 5(_’%”#) (v5kaky — vpsk®ky — ¥ kghs + vpyk"ks)8(x),
(3.96)

and we see that k& and y,4 give a complete characterization of the singular part of
the Riemann tensor.

From Eq. (3.96) it is easy to form the singular part of the Einstein tensor, and the
Einstein field equations then give us the singular part of the stress-energy tensor:

TP = (—k,ut) 7S 5(7), (3.97)
where
1
S = S (KT Rk KLYkt = yLRRP — kK gP)

i the surface stress-energy tensor of the null shell — up to a factor —k,u* that de-
pends on the choice of observers making measurements on the shell. Its expression
can be simplified if we decompose S* in the basis (k%, €%, N®). For this purpose
we introduce the projections

YA = YaB eikﬁ, YAB = Yup eieg, (3.98)
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and we use the completeness relations (3.89) to find that the vector v k" admits
the decomposition

Yokt = (v — o By p)k® + (0*Byg) €5 — (yuvk k") NY.

Substituting this into our previous expression for §%¢ and involving once more
the completeness relations, we arrive at our final expression for the surface stress-
energy tensor:

S = pkkP + jA(k%eh + eSkP) + porBeteh. (3.99)
Here,
— ! AB
= 167 (@ yas)

can be interpreted as the shell’s surface density,

as a surface current, and

1
P=—Tc- (vapk*k?)

as an isotropic surface pressure.

The surface stress-energy tensor of Eq. (3.99) is expressed in the continnous co-
ordinates x*. As a matter of fact, the derivation of Eq. (3.99) relies heavily on these
coordinates: The introduction of Yap Tests on the fact that in these coordinates, Sug
is continuous at ¥, so that an eventual discontinuity in the metric derivative must
be directed along k%. In the next subsection we will remove the need to involve the
coordinates x® in practical applications of the null-shell formalism. For the time
being we simply note that while Eq. (3.99) is indeed expressed in the coordinates
x“, itis a tensorial equation involving vectors (k* and €% ) and scalars (u, j#, and
p)- This equation can therefore be expressed in any coordinate system; in partic-
ular, when viewed from ¥ * the surface stress-energy tensor can be expressed in
the original coordinates x{ .

3.11.3 Intrinsic formulation

In Section 3.7, the surface stress-energy tensor of a timelike or spacelike shell was
expressed in terms of intrinsic three-tensors — quantities that can be defined on
the hypersurface only. The most important ingredients in this formulation were
hap, the (continuous) induced metric, and [ K], the discontinuity in the extrinsic
curvature. We would like to achieve something similar here, and remove the need
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to involve a continuous coordinate system x“ to calculate the surface quantities y,
j4, and p.

We can expect that the intrinsic description of the surface stress-energy ten-
sor of a null shell will involve o4p, the nonvanishing components of the induced
metric. We might also expect that it should involve the jump in the extrinsic cur-
vature of the null hypersurface, which would be defined by Kgp = ko egef =

%(;Ekgaﬁ) eg’ef. Not so. The reason is that there is nothing ‘transverse’ about this
object: In the case of a timelike or spacelike hypersurface, the normal n% points
away from the surface, and £, 84g truly represents the transverse derivative of the
metric; when the hypersurface is null, on the other hand, X is tangent to the sur-
face, and £ gup 18 a tangential derivative. Thus, the extrinsic curvature is necessar-
ily continuous when the hypersurface is null, and it cannot be related to the tensor
yap defined by Eq. (3.94).

There is, fortunately, an easy solution to this problem: We can introduce a trans-
verse curvature Cqj, that properly represents the transverse derivative of the metric.
This shall be defined by Cap = L (£ngap) €3¢t = L(Nuip + Ng:adelel, or

Cab = — Ny e, 4. (3.100)

To arrive at Eq. (3.100) we have used the fact that Nye; is a constant, and the iden-
tity eg; ﬁe{: = eg; ﬂeg , which states that each basis vector ] is Lie transported along
any other basis vector; this property ensures that Cgp, as defined by Eq. (3.100), is
a synumetric three-tensor.

In the continuous coordinates x®, the jump in the transverse curvature is given

by

[Cap] = [Nasp] ege}
= -—[l“’;ﬁ]Nyegeg
1

=3 Yap ey € s

where we have used Eq. (3.95) and the fact that k¥ is orthogonal to e . We therefore

have [Cy,] = l}’aﬁkakﬁ, [Carl = lyaﬁeikﬁ = 1yy, and [Capl = %yaﬁeieg =
2 2 2

%yA g, where we have involved Eq. (3.98). Finally, we find that the surface quanti-
ties can be expressed as

1 _ 1 1
H = —g O'AB[CAB], JA = '8—7[ O’AB[C,\B], P = —-8-;[_ [CKA]' (3'101)

We have established that the shell’s surface quantities can all be related to the
induced metric o4 p and the jump of the transverse curvature Cqp. This completes
the intrinsic formulation of our null-shell formalism.
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3.11.4 Summary

A singular null hypersurface % possesses a surface stress-energy tensor charac-
terized by tangent vectors k§ and e{ ,, as well as a surface density u, a surface
current j4, and an isotropic surface pressure p. The surface quantities can all be
related to a discontinuity in the surface’s transverse curvature,

a

Cap = — Ny ea;ﬁ (:‘E,
which is defined on either side of ¥ in the appropriate coordinate system x$. The
relations are
Y A !
= — C s .
#* 8 ? [ AB] J 8

The surface stress-energy tensor is given by

1

UAB[CAB], P=—z= [CM.]-

§of — kB + jA(kaeﬁ -} eikﬁ) + poABeieg,
and the complete stress-energy tensor of the surface layer is
o —1
TP = (—k,ut) " 5% 8(7).

In this cxpression, the factor (—kuu“)_l is continuous at ¥, and the vector field
ug is tangent to an arbitrary congruence of timelike geodesics parameterized by
proper time 7 (the congruence represents a family of observers making measure-
ments on the shell). The presence of this factor implies that p, j4, and p are
not truly the surface quantities that would be measured by the observers. The
physically-measured surface quantities are given instead by

Hphysical = ("—kﬁLu#)uIﬂa jliysical = (—kﬂuu)—IjAv

Pphysical = (—"kp,u'u’) -l .

The arbitrariness associated with the choice of congruence is thus limited to a
single multiplicative factor. The ‘bare’ quantities p, j4, and p are independent of
this choice, and it is often more convenient to work in terms of those.

3.1L5 Parameterization of the null generators

Our null-shell formalism is now complete, and it is ready to be involved in appli-
cations. We will consider a few in the following subsections, but we first return to
a statement made earlier, that in general A cannot be an affine parameter on both
sides of the hypersurface. We shall justify this here, and also consider what hap-
pens to y, j4, and p when the parameterization of the null generators is altered.
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Whether or not X is an affine parameter can be decided by computing «..,
the ‘acceleration’ of the null vector k§. This is defined on either side of the
hypersurface by (Section 1.3)

kP = ik,

and 1 will be an affine parameter on the ¥ T side of ¥ if x4 = 0. According
o Eq. (3.88), & = — Nk kP = ~Nyef e = Cy;, where we have also used
Eqgs. (3.85) and (3.100). Equation (3. ]01) then relates the discontinuity in the ac-
celeration to the surface pressure:

[«} = —8m p. (3.102)

We conclude that A can be an affine parameter on both sides of ¥ only when the
null shell has a vanishing surface pressure. When p # 0, A can be chosen to be
an affine parameter on one side of the hypersurface, but it will not be an affine
parameter on the other side.

Additional insight into this matter can be gained from Raychaudhuri’s equa-
tion, which describes the transverse evolution of a congruence of null geodesics
(Section 2.4). In Section 2.6, Problem 8, Raychaudhuri’s equation was written in
terms of an arbitrary parameterization of the null geodesics. When the congruence
is hypersurface orthogonal, it reads

do
d)&

where € and oug are the expansion and shear of the congruence, respectively; the
equation holds on either side of 3. Because it depends only on the intrinsic geom-
etry of the hypersurface, the left-hand side of Raychaudhuri’s equation is guaran-
teed to be continnous across the shell. Continuity of the right-hand side therefore
implies

-9 + 0% oys = K 6 — 8 Tygk®kP,

(160 = Br | Topk*kP]. (3.103)

This relation shows that [k} 7% O (and therefore p # 0) whenever the component
Tup k®k? of the stress-energy tensor is discontinuous at the shell. We conclude that
X cannot be an affine parameter on both sides of  when [T,gk*k#1 # 0. (Notice
that this conclusion breaks down when 8 = 0, that is, when the shell is stationary.)

Recalling (Section 2.4.8) that the expansion 8 is equal to the fractional rate
of change of the congruence’s cross-sectional area, we find that with the help of
Eq. (3.102), Eq. (3.103) can be expressed as

d
p—-dS + [Tupk k]S =0, (3.104)
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where dS = +/0'd%0 is an element of cross-sectional area on the shell (Sec-
tion 3.2.2). This equation has a simple interpretation: The first term represents
the work done by the shell as it expands or contracts, while the second term is the
energy absorbed by the shell from itg surroundings; Eq. (3.104) therefore states
that all of the absorbed energy goes into work.

Having established that A cannot, in general, be an affine parameter on both
sides of the hypcrsurface, let us now investigate how a change of parameterization
might affect the surface density u, surface current j#A, and surface pressure p of
the null shell. Because each generator can be reparameterized independently of
any other generator, we must consider transformations of the form

A - A(A, 0N, (3.105)

The question before us is: How do the surface quantities change under such a
transformation?

To answer this we need to work out how the transformation of Eq. (3.105)
affects the vectors k%, e%, and N We first note that the differential form of
Eq. (3.105) is

dr = eP dA + ¢, d04, (3.106)

¥ A N

- —_ )

et = , = ; 3.107
(al)ef\ o (BQA)A ( )

both ef and c4 depend on y* = (&, 84), but because they depend on the intrinsic
coordinates only, we have that [ef] = ( = [cal. A displacement within the hyper-
surface can then be described either by

where

dx® = k" dA + €4 do4,
where k% = (3x*/dA)g, and €% = (8x%/304),, or by
dx® = &k d + &% do“,

where k% = (ax“/ai)gA and € = (axa/aef‘);; these relations hold on either side
of %, in the relevant coordinate system x%. Using Eq. (3.106), it is easy to see that
the tangent vectors transform as

K =eTPk®, 8% =Y — cpePRY (3.108)

under the reparameterization of Eq. (3.105). It may be checked that the new ba-
sis vectors satisfy the orthogonalily relations (3.85), and that the induced metric
O0ap 1s invariant under this transformation: OAp = gaﬁéjég = gaﬂe‘}’;eg = OAR.
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To preserve the relations (3.88) we let the new auxiliary null vector be

N = ‘BN“+ZC cae PrY — cAe, (3.109)
where ¢ = o#8¢g. This ensures that the completeness relations (3.89) take the
same form 1n the new basis.

It 1s a straightforward (but slightly tedious) task to compute how the transverse
curvature C,p, changes under a reparameterization of the generators, and to then
compute how the surface quantities transform. You will be asked to go through
this calculation in Section 3.13, Problem 8. The answer is that under the reparam-
eterization of Eq. (3.105), the surface quantities transform as

p=elu+ 2eajt + cAcAe—ﬁp,

jA = jA 4 AeFp, (3.110)

p=¢ePp.

These transformations, together with Eq. (3.108), imply that the surface stress-
energy tensor becomes 5% = e £5*f, We also have (— Euu“)"l = ef(~ kuu’“‘)
and these results reveal that the combination (—k,u*)~1S% is invariant under the
reparameterization. This, finally, establishes the invariance of Tzﬂ , the full stress-
energy tensor of the surface layer.

As a final remark, we note that under the reparameterization of Eq. (3.105), the
physically-measured surface quantities transform as

i7 2 .« A A
Hphysical == € JBliphysican + ZCAe‘B Johysical + € €A Pphysicals

-A LA A

Jphysical = eﬁjphysic;ﬂ + ¢" Pphysicals (3.111)
ﬁphysical = Pphysicals

we see in particular that the physically-measured surface pressure is an invariant.

3.11.6 Imploding spherical shell

For our first application of the null-shell formalism, we take another look at the
gravitational collapse of a thin spherical shell, a problem that was first formulated
in Section 3.9. Here we imagine that the collapse proceeds at the speed of light,
and that the thin shell lies on a null hypersurface ¥. We take spacetime to be flat
inside the shell (in ¥ ™), and write the metric there as

ds?_ = —drg_ +dr? 4+ r2 sz,
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in terms of spatial coordinates (r, 0, ¢) and a time coordinate /.. The metric out-
side the shell (in ¥ *) is the Schwarzschild solution,

dsi = —fdt_?_ —l—f_'] dr2+r2d§22,

which is expressed in the same spatial coordinates but in terms of a distinct time
ty; here, f =1 —2M/r and M denotes the gravitational mass of the collapsing
shell.

As seen from ¥ 7, the null hypersurface ¥ is described by the equation r_ +
¥ = v_ = constant, which means that the induced metric on X ig given by ds% =
r2do?. As seen from ¥ 1, on the other hand, the hypersurface is described by
ty + r*(r) = vy = constant, where rry= [ fldr=r +2MIn(r/2M — 1),
and this gives rise to the same induced metric. From these considerations we see
that it was permissible to express the metrics of ¥ = in terms of the same spatial
coordinates (r, 8, ¢), but that £, cannot be equal to £_. The induced metric on the
shell is

oap d604d0% = 1%(d0? 4 sin’ 0 dg?),

where we have set 64 = (0, ¢} and identified —r with the parameter A on the null
generators of the hypersurface; we shall see that here, A is an affine parameter on
both sides of X.

As seen from 77, the parametric equations x® = x2 (A, 04) that describe the
hypersurface have the explicit form r_ = v_ + A, r=—X,0=20, and ¢ = ¢,
These give us the tangent vectors & O = 0t ~ 0, ¢ 8y = 3y, and eg @ = 0Op, and
the basis is completed by N dx* = —1(ds — dr). From all this and Eq. (3.100)
we find that the nonvanishing components of the transverse curvature are

|
Cip=— i
AB T 5 0AB

The fact that C;;, = O confirms that A = —r is an affine parameter on the ¥~ side
of 2.

As seen from ¥ 7, the parametric equations are 1, = Uy —r*(=A), r = —2,
0 =0, and ¢ = ¢. The basis vectors are k%3, = F~15, — O, €5 0a = 35, €50, =
0, and Ny dx® = —%(f dt — dr). The nonvanishing components of the transverse
curvature are now

+ _f
The fact that Cﬁ = O confirms that A = — is an affine paraineter on the ¥ 1 side

of X, A is therefore an affine parameter on both sides.
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The angular components of the transverse curvature are discontinuous across
the shell: {Cag] = —(M/rQ)UAB. According to Eq. (3.101), this means that the
shell has a vanishing surface current j* and a vanishing surface pressure p, but
that its surface density is

M
T 4nr?

We have obtained the very sensible result that the surface density of a collapsing
null shell is equal to its gravitational mass divided by its (ever decreasing) sur-
face area. Notice that Mphysical = M for observers at rest in 7 ~. Because of the
focusing action of the null shell, however, these observers do not remain at rest
after crossing over (o the ¥ side: A simple calculation, based on Eq. (3.91),
reveals that an observer at rest before crossing the shell will move accmdmg to
dr/dr = —(E? — HHY? after crossing the shell; the energy parameter E varies
from observer to observer, and is related by E=1-M /rs to the radius ry at
which a given observer crosses the hypersurface,

3.11.7 Accreting black hole

Our second application of the null-shell formalism features a nonrotating black
hole of mass (M — m) which suddenly acquires additional materia! of mass m and
angular momentum J = aM. We suppose that the accretion process is virtually
instantaneous, that the material falls in with the speed of light, and that J <« M2,
We idealize the accreting material as a singular matter distribution supported on a
null hypersurface .

The spacetime in the future of X (in ¥ ) is that of a slowly rotating black hole
of mass M and (small) angular momentum a M. We write the metric in ¥ * as in
Eq. (3.71),

4M
ds_zir = —fdt2+ f_ldr2 —|—r2 d9? — a sin? 6 dt d¢,
r

where f =1—2M/r; this is the slow-rotation limit of the Kerr metric, and
throughout this subsection we will work consistently to first order in the small
parameter a.

As seen from ¥, the null hypersurface ¥ is described by v =7 + r* = 0,
where r* = [ f~tdr =r +2M In(r/2M — 1); you may check that in the slow-
rotation limit, every surface v = constant is null. It follows that the vector k¥ =
g (- dgv) is normal to ¥ and tangent to its null generators, We have

T 1 5 +2Maa
&_“f. (2 3f (ﬁ:
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and from this expression we deduce four important properties of the generators.
First, the generators are affinely parameterized by A = ~r. Second, as measured by
inertial observers at infinity, the generators move with an (ever increasing) angular
velocity

d¢ 2Ma

E = Qgenerators = —?‘—3—
Third, 0 is constant on each generator. And fourth, integration of d¢/(—dr) =
2Ma/(r®f) reveals that

v=¢+ (14 5-Inf)

also is constant on the generators.

We shall use y* = (A = —r, 8, ) as coordinates on £; as we have just seen,
these coordinates are well adapted to the generators, and this property is re-
quired by the null-shell formalism. Remembering that dt = —dr/f and d¢ =
dy — (2Ma/r f)dr on X, we find that the induced metric is

oap d04d0® = r2(d6? + sin?0 dy'?),

and that the hypersurface is intrinsically spherical.
The parametric description of %, as seen from ¥ 7, is x%(—r, 6, ¥), and from
this we form the tangent vectors ey = k<, eg = &5, and ef[‘, == 8;. The basis is

completed by Ny dx® = L(— f d¢ + dr). From Eq. (3.100) we obtain

3IMa

2

ch =
A r

.2 +
sin“ g, Cin=-—0AB
AB ™ oy

for the nonvanishing components of the transverse curvature.
The spacetime in the past of £ (in ¥ 7) is that of a nonrotating black hole of
mass (M — m). Here we write the metric as

ds2 = —Fdf* + F dr? 4 12 (d6? + sin 0 dy?),

in terms of a distinct time coordinate ¢ and the angles 6 and y; we also have
F =1~ 2(M —m)/r. This choice of angular coordinates implies that inertial ob-
servers within ¥"~ corotate with the shell’s null generators; this is another mani-
festation of the dragging of inertial frames, a phenomenon already encountered in
Section 3.10. As we shall see presently, this choice of coordinates is dictated by
continuity of the induced metric at X,

The mathematical description of the hypersurface, as seen from ¥ ~, is identical
to its external description provided that we make the substitutions r — 7, ¢ — ¥,
M — M —m, anda — 0. According to this, the induced metric on ¥ is still given
by ds% = r?(d0? + sin? 0 dy?), as required. The basis vectors are now k%3, =
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F~15; — 3, egaa = dg, eiaa = dy,, and Ny dx® = %(—F df -+ dr). This gives us

_ F
CAB = 5 OAB
for the nonvanishing components of the transverse curvature.

The transverse curvature is discontinuous at X, and Egs. (3.101) allow us to
compute the shell’s surface quantities. Because the generators are affinely param-
eterized by —r on both sides of the shell, we have that p = 0 — the shell has a
vanishing surface pressure. On the other hand, its surface density is given by

m
= dnrd
the ratio of the shell’s gravitational mass m to its (ever decreasing) surface area
4712, Thus far our results are virtually identical to those obtained in the preceding

subsection, What is new in this context is the presence of a surface current j#,
whose sole component is

i 3IMa
Jh'f —

T 8nrt
This comes from the shell’s rotation, and the fact that the situation is not entirely
spherically symmetric,

To better understand the physical significance of the surface current, we express
the shell’s surface stress-energy tensor,

S = uk*kf 4 j"”(k“eg + eG kP,

in terms of the vector £% = k% 4 ( ¥/ ey, - This vector is null (when we appro-
priately discard terms of order a2 in the c'llcuhtlon of gaﬁﬁ‘”ﬁﬂ) and it has the
components
%9 1 0 — dr + : Qfuigd
= — 0y — — $2fuid
o f r f ui qﬁ

in the coordinates x* = (¢, r, 0, ¢) used in ¥ T we have set

2Ma 3Ma
Qfuid = —5— + f
Fe 2mr

The shell’s surface stress-energy tensor is now given by the simple expression
S = e ph,

which corresponds to a pressureless fluid of density « moving with a four-velocity
£%. We see that the fluid is moving along null curves (not geodesics!) that do not
coincide with the shell’s null generators. The motion across generators is created
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by a mismatch between Qqyiq, the fluid’s angular velocity, and Q2generators, the an-
gular velocity of the generators. The mismatch is directly related to j4:
iV 3Ma

Qrelative = Rfuig — Qgc:nerators - =
7 2mr

Notice that the fluid rotates faster than the generators, which share their angular
velocity with inertial observers within # ~; such a phenomenon was encountered
before, in the context of the stationary rotating shell of Section 3.10. But notice also
that $2¢jative decreases to zero as r approaches 2M: The fiuid ends up corotating
with the generators when the shell crosses the black-hole horizon.

3.11.8 Cosmological phase transition

In this third (and final) application of the formalism, we consider an intriguing (but
entirely artificial) cosmological scenario according to which the universe was ini-
tially expanding in two directions only, but was then made to expand isotropically
by a sudden explosive event.

The 7™ region of spacetime is the one in which the universe is expanding in
the x and y directions only. Its metric is

ds? = —dr? + az(t) (dx2 + dyz) +dz?,

and the scale factor is assumed to be given by a(1) o /2, The cosmological fluid
moves with a four-velocity u* = 9x®/3¢, and it has a density and (isotropic) pres-
sure given by p_ = p_ = 1/(32nt2), respectively.

In the 7% region of spacetime, the universe expands uniformly in all three
directions. Here the metric is

dsy = —di? 4 a%(r) (dx? + dy? + dz2),

with the same scale factor a(#) as in ¥ ~, and the cosmological fluid has a density
and pressure given by p, = 3p, = 3/(32n71?), respectively; this corresponds to a
radiation-dominated universe.

The history of the explosive event that changes the metric from - 4 10 gj p traces
a null hypersurface X in spacetime. This surface moves in the positive z4 direction
and as we shall see, it supports a singular stress-energy tensor. The ‘agent’ that
alters the course of the universe’s expansion is therefore a nufl shell.

As seen from 7" 7, the hypersurface is described by ¢+ = z_ + constant, and the
vector k%9, = 9; + d; is tangent to the null generators, which are parameterized
by ¢. In fact, because k% ﬂkﬁ = 0 we have that ¢ is an affine parameter on this side
of the hypersurface. The coordinates x and y are constant on the generators, and
we use them, together with ¢, as intrinsic coordinates on L. We therefore have
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¥ = (£,04), 04 = (x, y), and the shell’s induced metric is
oap d04 68 = a? (1) (dx? + dy?).

The remaining basis vectors are e%9y = 9y, eg w =03y, and Ny dx® =

—%(dr + dz-). The nonvanishing components of the transverse curvature are

_ 1
= —gAB.
AB T 44

We note that on the ¥~ side of X, the null generators have an expansion given
by 0 = k%, = 1/¢, and that Topk®kf = p_ 4+ p_ = 1/(1671%), where T°F is the
stress-energy tensor of the cosmological fluid.

As seen from ¥ *, the description of the hypersurface is obtained by integrat-
ing df = a(t) dz4, and k%3, = 8; +a~'9, is tangent to the null generators. We
note that 7 is not an affine parameter on this side of the hypersurface: we have
that k“;’ﬁkﬁ = (21)~'k®. The remaining basis vectors are €29, = ;, €38, = dy,
Ny dx® = —%(dt +adz,), and the nonvanishing components of the transverse
curvature are now

1 1
le-:i, CIBZZEO'AB.
On this side of X, the generators have an expansion also given by 0 = 1/¢ (since
continuity of & is implied by continuity of the induced metric), and T,pk?kP =
P+ + Py = 1/(8r1?).

The fact that ¢ is an affine parameter on one side of the hypersurface only tells

us that the shell must possess a surface pressure. In fact, continuity of C4p across

the shell implies that p is the only nonvanishing surface quantity. It is given by

the negative sign indicating that this surface quantity would be better described
as a tension, not a pressure. The shell’s surface stress-energy tensor is S% =
p o8 e%e%. If we select observers comoving with the cosmological fluid as our
preferred observers to make measurements on the shell, then —kyu® == I and the
full stress-energy tensor of the singular hypersurface is Tgﬁ = St — ty), with
Iy denoting the time at which a given observer crosses the shell. We see that for
these observers, — p is the physically-measured surface tension.

Finally, we note that the expressions —p = 1/(16nt), 6 = 1/¢, and
[T,pk? k8] = 1/(167t%) are compatible with the general relation —p6 =
[Tupk®k#] derived in Section 3.11.5. This shows that the energy released by the
shell as it expands is absorbed by the cosmological fluid, whose density increases
by a factor of p, /p_ = 3; this energy is provided by the shell’s surface tension.
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3.12 Bibliographical notes

During the preparation of this chapter I have relied on the following references:
Barrabgs and Israel (1991); Barrabés and Hogan (1998); de la Cruz and Israel
(1968); Israel (1966); Misner, Thorne, and Wheeler (1973); Musgrave and Lake
(1997); and Wald (1984).

More specifically:

Sections 3.1, 3.2, and 3.3 are based partially on unpublished lecture notes by
Werner Israel. Sections 3.4, 3.5, and 3.9 are based on Israel’s paper. Section 3.6 is
based on Section 10.2 of Wald. Sectjons 3.7 and 3.11 (as well as Problem 9 below)
are based on Barrabés and Israel. Section 3.8 is based on Exercise 32.4 of Misner,
Thorne, and Wheeler. Section 3.10 is based on de la Cruz and Israel. Finally, the
examples of Sections 3.11.7 and 3.11.8 are adapted from Musgrave and Lake, and
Barrabés and Hogan, respectively.

Suggestions for further reading:

Solving the initial-value problem of general relativity is an important aspect of
numerical relativity, and a lot of effort is currently devoted to finding initial data
that involve compact bodies in astrophysically realistic situations. The situation is
reviewed by Greg Cook in his 2000 Living Reviews article.

Could our four-dimensional universe be a singular hypersurface in an extended
five-dimensional world? This intriguing idea, a variation on the old Kaluza-Klein
scenario, was proposed recently by Randall and Sundrum (1999a and 1999b). The
intense scientific activity that followed the publication of their papers is reviewed
by Brax and van de Bruck (2003).

3.13 Problems

Warning: The results derived in Problem 1 are used in later portions of this book.

1. We consider a hypersurface 7 = constant in Schwarzschild spacetime, where

_ 1 Jr[2M — 1
T =t +4Ml: ri2M + 5 ln(——-—-———,_____r/ZM_i_ l)il

We use (r, 0, ¢) as coordinates on the hypersurface.

(a) Calculate the unit normal n, and find parametric equations that describe
the hypersurface.

(b) Calculate the induced metric Ay .

(¢) Calculate the extrinsic curvature K ;. Verify that your results agree with
those of Section 3.6.6, and show that K is equal to the expansion of
the congruence considered in Section 2.3.7.
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(d) Prove that when it is expressed in terms of the coordinates (7T, r, 6, &),
the Schwarzschild metric takes the form
ds* = —d72 + (dr + 2M/r dT)? + r2 402,

This shows very clearly that the sections T = constant are intringi-
cally flat. [This coordinate system was discovered independently by
Painlevé (1921) and Gullstrand (1922). It is presented in some detail
in a 2001 paper by Martel and Poisson.]
A four-dimensional hypersurface is embedded in a flat, five-dimensjonal
spacetime. We use coordinates z4 in the five-dimensional world, and express
the metric as

ds” = nap dz# de® = —(dz%% + (dz1)? + @222 + (d2%)? + (g2

we let uppercase Latin indices run from 0 to 4. In the four-dimensional world
we use coordinates x¥ = (1, x, 6, ¢). The hypersurface is defined by paramet-
ric relations z4 (x®). Explicitly,

L =a sinh(t/a), '=a cosh(t/a) cos x, 2=a cosh(t/a) sin x cos@

=a cosh(z/a) sin x sin @ cos ¢, t=a cosh(¢/a) sin x sin 8 sin ¢,

b

where a is a constant,

(a) Compute the unit normal n* and the tangent vectors e = 3z4/9x® to
the hypersurface.

(b) Compute the induced metric gap- What is the physical significance of this
four-dimensional metric? Does it satisfy the Einstein field equations?

(¢) Compute the extrinsic curvature X - Use the Gauss—Codazzi equations
to prove that the induced Riemann tensor can be expressed as

1
Raﬁyé‘ = EIE (gaygﬂ5 - gaégﬁ?)'

This implies that the four-dimensional hypersurface is a spacetime of
constant Ricci curvature,
In this problem we consider a spherically symmetric space at a moment of
time symmetry. We write the three-metric as

ds? = de? + r2(0) d92,

where £ is proper distance from the centre.
(a) Show that in these coordinates, the mass function introduced in Sec-
tion 3.6.5 is given by

[1 _ (dr/dﬁ)z].

m(r) =

1 R ]
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(b) Solve the constraint equations for a uniform mass density p on the hyper-
surface. Make sure to impose the asymptotic condition r (£ — 0) — ¢
to force the three-metric to be regular at the centre.

(¢) Prove that r (£) can be no larger than rmax = +/3/(87p).

(d) Prove that 2m(rmax) = Fmax, and that m (rmax) is the maximum value of
the mass function.

(e) What happens when £ — mrya,?

Prove the statement made near the end of Section 3.7.5, that [K,5] = 0 is a

sufficient condition for the regularity of the full Riemann tensor at the hypetr-

surface ¥.

Prove that the surface stress-energy tensor of a thin shell satisfies the conser-

vation equation

Sa?b = —e[j%],
where j, = aﬁegnﬁ. Interpret this equation physically. (Consider the case
where the shell is timelike.)
The metric

ds? = —dr? + d€? + r2(£) dQ?,

where r(£) = £ when 0 < £ < £g and r(£) = 26y — £ when £y < £ < 28g, de-
scribes a spacetime with closed spatial sections. (What is the volume of a hy-
persurface 1 = constant?) The spacetime is flat in both ¥ ~ (¢ < £y) and ¥ T
(£ > £p), but it contains a surface layer at £ = #y.
(a) Calculate the surface stress-energy tensor of the thin shell. Express this
in terms of a velocity field #®, a density o, and a surface pressure p.
(b) Consider a congruence of outgoing null geodesics in this spacetime, with
its tangent vector ky = —38, (+ — £). Calculate 8, the expansion of this
congruence. Show that it abruptly changes sign (from positive to nega-
tive) at £ = £y. The surface layer therefore produces a strong focusing
of the null geodesics.
(¢} Use Raychaudhuri’s equation to prove that the discontinuity in d9/d# is
precisely accounted for by the surface stress-energy tensor.
Two Schwarzschild solutions, one with mass parameter m_, the other with
mass parameter m4., are joined at a radius r = R(t) by means of a spherical
thin shell; © denotes proper time for an observer comoving with the shell. It is
assumed that m_ is the interior mass (m is the exterior mass), that my >me_,
and that R(r) > 2my for all values of . The shell’s surface stress-energy
tensor is given by

Sab — (0. + p)uaub + phab.‘
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where u® is the fluid’s velocity field, o (1) the surface density, p(t) the surface
pressure, and A, the induced metric,
(a) Derive, and interpret physically, the equation

d d
G OR )+pa;(R)—0-

(b) Find the values of o and p which produce a static configuration: R(t) =
Ro = constant. Verify that both o and p are positive. {The stability
of these static configurations was examined by Brady, Louko, and
Poisson (1991).]

Derive the relations (3.109),

Let spacetime be partitioned into two regions ¥ * with metrics

dsi = — fr dv? + 2dvdr + r2dQ2.

We assume that the coordinate system (v, r, 8, ¢) is common to both ¥ —
and ¥ *. (In each region we could introduce a conventional time coordinate
t+ defined by dti. = dv — dr/fy, but it is much more convenient to work
with the original system.) In ¥ ™ we set f~=1—rg/r, so that the metric
is a Schwarzschild solution with mass parameter M = ~12-r(). In v * we set
f+ = 1= (r/rg)?, so that the metric is a de Sitter solution with cosmological
constant A = 3/ro?. (This metric is a solution to the modified Einstein field
equations, Gog + Ageg = 0.) The boundary ¥ between the two regions is the
null surface r = rg, the common horizon of the Schwarzschild and de Sitter
spacetimes.

Using y* == (v, 8, ¢) as coordinates on ¥, calculate the surface quantities u,
j#, and p associated with the null shell. Explain whether your results are com-
patible with the general relation p g = [Taﬁk“kﬁ] derived in Section 3.11.5.
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Lagrangian and Hamiltonian formulations
- of general relativity

Variational principles play a fundamental role in virtually all areas of physics, and
general relativity is no exception. This chapter is devoted to a general discussion
of the Lagrangian and Hamiltonian formulations of field theories in curved space-
time, with a special focus on general relativity,

The Lagrangian formulation of a field theory (Section 4.1) begins with the in-
troduction of an action functional, which is usually defined as an integral of a
Lagrangian density over a finite region 7" of spacetime. As we shall see, general
relativity is peculiar in this respect, as its action involves also an integration over
3, the boundary of the region #; this is necessary for the well-posedness of the
variational principle. We will, in this chapter, provide a systematic treatment of the
boundary terms in the gravitational action.

The Hamiltonian formulation of a field theory (Section 4.2) involves a decom-
position of spacetime into space and time, Geometrically, this corresponds to a
foliation of spacetime by nonintersecting spacelike hypersurfaces . In this 341
decomposition, the spacetime metric gqg is broken down into an induced metric
hab, a shift vector N, and a lapse scalar N; while the induced metric is concerned
with displacements within Z, the lapse and shift are concerned with displacements
away from the hypersurface. The Hamiltonian is a functional of the field configu-
ration and its conjugate momentum on . In general relativity, the Hamiltonian is a
functional of A4p and its conjugate momentum p“b, whieh is closely related to the
extrinsic curvature of the hypersurface X; the lapse and shift are freely specifiable,
and they do not appear in the Hamiltonian as dynamical variables, The gravita-
tional Hamiltonian inherits boundary terms from the action functional; those are
defined on the two-surface S formed by the intersection of 3% and X.

There is a close connection between the gravitational Hamiltonian and the total
mass M and angular momentum J of an asymptotically-fiat spacetime; this con-
nection is explored in Section 4.3. We will see that the value of the gravitational
Hamiltonian for a solution to the Einstein field equations depends only on the

118
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conditions at the two-dimensional boundary S, When the spacetime is asymptoti-
cally flat and § is pushed to infinity, the Hamiltonian becomes M if the lapse and
shift are chosen so as to correspond to an asymptotic time translation. For an alter-
native choice of lapse and shift, corresponding to an asymptotic rotation about an
axis, the Hamiltonian becomes J, the component of the angular-momentum vec-
tor along this axis. These Hamiltonian definitions for mass and angular momentum
form the starting point of a rather broad review of the different notions of mass and
angular momentum in general relativity.

4.1 Lagrangian formulation
4.1.1 Mechanics

In the Lagrangian formulation of Newtonian mechanics, one is given a Lagrangian
L(g. ¢), afunction of the generalized coordinate ¢ and its velocity ¢ = dg/dt. One
then forms an action functional S[q],

f
Siq] = f Lig, &) dr, @.1)
f

by integrating the Lagrangian over a selected path ¢ (¢). The path that satisfies the
equations of motion is the one about which S[q] is stationary: Under a variation
8q (1) of this path, restricted by :

8q(t1) = 8q(t2) =0 (4.2)

but otherwise arbitrary in the interval 1| < ¢ < f7, the action does not change, §§ =
0.

The change in the action is given by

2
55:[ oL dt
3
h /oL al
f:l (aq dq

oL |7 ffz(az, d BL)
+ — — —— }8g dr,
{ f aq dt aq

=—20
ag 1

where, in the last step, we have used 8¢ = d(5¢)/d¢ and integrated by parts. The

boundary terms vanish by virtue of Eq. (4.2). Because the variation is arbitrary

between 11 and 1,

d 8L oL
88 = —— e — == (), 4.3
0 = Ty (4.3)
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This is the Euler—Lagrange equation for a one-dimensional mechanical system.,
Generalization to higher dimensions is immediate.

4.1.2 Field theory

We now consider the dynamics of a field g (x®) in curved spacetime. Although this
field could be of any type (scalar, vector, tensor, spinor), for simplicity we shall
restrict our attention to the case of a scalar field. '

In the Lagrangian formulation of a field theory, one is given an arbitrary region
¥ of the spacetime manifold, bounded by a closed hypersurface 37", One is also
given a Lagrangian density £ (g, q.o), a scalar function of the field and its first
derivatives, The action functional is then

Slq] = L/_z) (@, q.a)V =g d*x. (44)

Dynamical equations for ¢ are obtained by introducing a variation §g (x) that is
arbitrary within 7 but vanishes everywhere on 87,

8ql,4 =0, (4.5)

and by demanding that §S vanish if the variation is about the actual path q(x%).
Equation (4.5) is the field-theoretical counterpart to Eq. (4.2).
Upon such a variation (we use the notation &’ = 3¢ /dq, L =32/09a)

8S :f (3'8q+.,9,”“6q,0,)«/—g d*x
g
:f [.£'8g + (L *8q)a — 20 Sql/~gdx
v '
:f (ﬁ'wfqa)aq\/—gd'lx—f% L %8qdZ,,
Vv ’ 3v

where Gauss’ theorem (Section 3.3) was used in the last step. The surface integral
vanishes by virtue of Eq. (4.5), and because 8 is arbitrary within 7 we obtain

< 9
8§ =0 = V, —--—9—9.?:0. (4.6)
09« dq

This is the Euler-Lagrange equation for a single scalar field g. Generalization to a
collection of fields is immediate, and the procedure can be taken over to fields of
arbitrary tensorial or spinorial types.
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As a concrete example, let us consider a Klein-Gordon field y with Lagrangian
density

1

L= —5 (g*“’w,m,v + m_zllfz).

We have % = —g®Py; o, L%y =8 Yap, and L' = —m%y. The Buler—
Lagrange equation becomes

gﬂfﬂw;aﬁ . mzw — 0’

which is the curved-spacetime version of the Klein-Gordon equation.

4.1.3 General relativity

The action functional for general relativity contains a contribution Sg(g] from the
gravitational field g and a contribution Sps[¢; g] from the matter fields, which
we collectively denote ¢.

The gravitational action contains a Hilbert term Sy [g], a boundary term Sg([g],
and a nondynamical term Sy that affects the numerical value of the action but not
the equations of motion. More explicitly,

Sclgl = Sulgl + Selgl — So, (4.7)
where
1
Sulgl= — | RJ=g d*x, (4.8)
167 fy
1
Sglel = _j£ eK|h|1/2dy, (4.9)
8 8
So = 1 eKolh)/* dy, (4.10)
87 Jav

Here, R is the Ricci scalar in ¥, K is the trace of the extrinsic curvature of 8%, ¢
is equal to +1 where 37 is timelike and —1 where 8% is spacelike (it is assumed
that 97" is nowhere null), and # is the determinant of the induced metric on 87,
Coordinates x* are used in ¥, and coordinates y* are used on 3% . The role of
Sg[g] in the variational principle will be elucidated below. The presence of Sg in
the action will also be explained, and this explanation will come with a precise
definition for the quantity Kj.
The matter action is taken to be of the form

Suld; gl = L L (P, P gap)/—g A x, (4.11)
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for some Lagrangian density .%. As Eq. (4.11) indicates, it is assumed that only
gap, and none of its derivatives, appears in the matter action. This assuruption is
made for simplicity and it could easily be removed.

The complete action functional 1s therefore

R 1
Slg; 6] = f (m + 2 ) gd s+ —¢ ek — Kol &y, (4.12)
54 167 8 av
The Einstein field equations, Gy = 87 Typ, are recovered by varying Slg, ¢] with
respect to gog. The variation is subjected to the condition
88aplyy = 0. (4.13)

This implies that Aqp = gap egeg, the induced metric on 37, is held fixed during
the variation,

4.1.4 Variation of the Hilbert term

It is convenient to use the variations §g®F instead of 8gqg. These are of course not
independent: the relations g*# g, 5 = 5aﬁ imply

88ap = —Banlpv sgh’. _ (4.14)
We recall (from Section 1.7) that the variation of the metric determinant is given

bySin|gl = g"’ﬂSgaﬁ = —gaﬁég“ﬁ, which implies

1
8V=8 = —~5 V=88 880 (4.15)

We also recall (from Section 1.2) that although I’ ";3;/ is not a tensor, the difference
between two sets of Christoffe] symbols is a tensor; the variation & [““m, is therefore
a tensor.

We now proceed with the variation of the Hilbert term in the gravitational
action:

(167r)cSSH=f S(gaﬁRa‘g,./—g) d*x
v
= f (Rap/—888°F + g°F /=g 8Rup + RS/—g) d'x
t4
1
—_—f (Raﬁ ) Rguﬁ)ég“ﬁa/—g d*x +f g8 Ryp/—gdix.
v t4

In the last step we have used Eq. (4.15). The first integral seems to give us what we
need for the left-hand side of the Einstein field equations, but we must still account
for the second integral.



4.1 Lagrangion formulation 123

Let us work on this integral. We begin with 8 Rag, which we calculate in a Jocal
Lorentz frame at a point P:

8Rap = S(Flfrﬁ wo I"wa 8)

= (‘SF aﬁ),ﬁ - (ar%u),ﬁ
= (Sr‘iﬁ),‘u o (61_‘%.'!«6),.3

Here, covariant differentiation is defined with respect to the reference metric 8af
about which the variation is taken. We notice that the last expression is tensorial;
it is therefore valid in any coordinate system. We have found

8 8Ryp = 80K, but = g PeTH gHarh, . (4.16)

We use the “slash’ notation 8v* to emphasize the fact that v# is not the variation
of some quantity v¥. Using Eq. (4.16), the second integral in § Sy becomes

f}l/gaﬁSRaﬁﬂ/—gda’x =f3v‘fw/—~gd4x

= % 51)“ dE‘u,
av

:55 g vin, (|2 &y,
3

where n, is the unit normal to 8% and ¢ = n¥n, = +1.

We must now evaluate §v#n,,, keeping in mind that on 3%, 6gep = 0 = §g8.
Under these conditions,

1
5Fuf3|31/ ~ 9 guu(ngot.ﬁ + 88vp,a — ‘Sgaﬂ,v),

and substituting this into Eq. (4.16) yields dv,, = g*# (8g..« — 8gup. 1), SO that

nE8UL 3y = 1t (en®nP + 1) (g up 0 — 88ap )
= nthoP (8gup.a — 88ap,u)-
In the first line we have inserted the completeness relations g*f = en®nf + h°f,
where hf = pbeo eb (see Section 3.1). To obtain the second line we have multi-
plied n%n# by the antiSymmetric quantity within the brackets. Proceeding, we ob-

serve that because §gqg vanishes everywhere on 37, its tangential derivatives must
vanish also: 8gag, ye! = 0.1t follows that % 8g,,5 » = 0 and we finally obtain

rz“&v‘ufay = ——h“‘BSgaﬁ’Mrz“’. (4.17)
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This is nonzero because the normal derivative of §gag is not required to vanish on
the hypersurface.
Gathering the results we obtain

(I6H)SSH=f GaﬁSgaﬂ«/_-—gdA'x——% eh®8gyg RV Py, (4.18)
v 3y

The boundary term in Eq. (4.18) will be cancelled by the variation of Sg[g]: this is
the reason for including a boundary term in the gravitational action. That a bound-
ary term is needed is due to the fact that R, the gravitational Lagrangian density,
contains second derivatives of the metric tensor. This is a nontypical feature of
field theories, which are usually formulated in terms of Lagrangians that involve ¢
and g o only.

4.1.5 Variation of the boundary term

We now work on the variation of Sg[g], as given by Eq. (4.9). Because the induced
metric is fixed on 37, the only quantity to be varied is K, the trace of the extrinsic
curvature. We recall from Section 3.4 that

so that its variation is

oK = mh“ﬁéf‘};ﬁﬂy
1
= =5 h (880, + 8810 — Bap )"

1
—_ E h“ﬂSgaﬂiun“;

we have used the fact that the tangential derivatives of 8gqg vanish on 37. We
have obtained

(167)8Sp = jé eh®Psgyg R dy, (4.19)
8y

and we see that this indeed cancels out the second integral on the right-hand side of
Eq. (4.18). Because 655 = 0, the complete variation of the gravitational action is

1
SSG = —f Gaﬁ 5gaﬁ»\/ —gd4x. (420)
16 J+

This produces the correct left-hand side to the Einstein field equations.
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4.1.6 Variation of the matter action

Variation of Sy {¢; g], as given by Eq. (4.11), yields

8Sm =f 8(LJ/=g) d*x
v

8.
:f ( 5g“ﬁﬁ+$5ﬁ§) d*x
4

ogep

2 1 o
" ff/(agaﬁ 2 iﬂgaﬁ)ag Vrgdt

If we define the stress-energy tensor by

9.9
Top = —zag‘”ﬁ + 2L g8, (4.21)
then
1
8Sy = _Ef Tup 6g“ﬁ«/~g d4x, (4.22)
4

and this produces the correct right-hand side to the Einstein field equations.
We have obtained

6(S¢ +Su) =0 = Gap = 8uTy, (4.23)
because the variation §g* is arbitrary within . The Einstein field equations there-
fore follow from a variational principle, and the action functional for the theory is
given by Eq. (4.12).

To see that Eq. (4.21) gives a reasonable definition for the stress-energy tensor,
let us consider once more a Klein—~Gordon field ¥ with Lagrangian density

2=~ (Vb + mV7).
It is easy to check that for this, Eq. (4.21) becomes
Tap = Ya¥.p— % (W‘”’W,u + mzwz)gaﬁ-
This is the correct expression for the Klein—Gordon stress-energy tensor. You may

look into the consistency of this result by checking that the statement of energy-
momentum conservation, T“‘? g = 0, implies the Klein—Gordon equation.
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4.1.7 Nondynamical term
What is the role of

So = ng eKoln|'? d’y
87 Jay

in the gravitational action? Because Sy depends only on the induced metric Aqp
(through the factor |k]|!/? in the integrand), its variation with respect to gqg gives
zero, and the presence of Sy cannot affect the equations of motion. Its purpose can
only be to change the numerical value of the gravitational action.

Let us first assume that gyg is a solution to the vacuum field equations. Then
R = 0 and the numerical value of the gravitational action is

1
S == —— K12 &y,
G Snéy/ {hl y

where we omit the subtraction term Kg for the time being. Let us evaluate this
for flat spacetime. We choose 3% to consist of two hypersurfaces ¢ = constant
and a large three-cylinder at r = R (Fig. 4.1). It is easy to check that K = 0 on
the hypersurfaces of constant time. On the three-cylinder, the induced metric is
ds? = —dr? + R?d2, so that |h|!/2 = R?sin 6. The unit normal is ng = 347, S0
that e = 1 and K = n%_ = 2/R. We then have

5{ eK[h|'? &y = 8x R(tr — 1),
av

and this diverges when R — oo, that is, when the spatial boundary is pushed all the
way to infinity. The gravitational action of flat spacetime is therefore infinite, even
when ¥ is bounded by two hypersurfaces of constant time. Because this problem
does not go away when the spacetime is curved, this would imply that the gravita-
tional action is not a well-defined quantity for asymptotically-flat spacetimes. (Of
course, the problem goes away if the spacetime manifold is compact.)

————————————
- -

Figure 4.1 The boundary of a region ¥ of flat spacetime.
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This problem is remedied by Sg. This term is chosen to be equal to the gravi-
tational action of flat spacetime, as regularized by the procedure adopted before.
The difference S — Sp is then well defined in the limit R — oo, and there is no
longer a difficulty in defining a gravitational action for asymptotically-flat space-
times. (The subtraction term is irrelevant for compact manifolds.) In other words,
the choice

Kp = extrinsic curvature of 3% embedded in flat spacetime (4.24)

cures the divergence of the gravitational action, which is then well defined when
the spacetime is asymptotically flat. In particular, Sg = 0 for flat spacetime.

4.1.8 Bianchi identities

The Lagrangian formulation of general relativity provides us with an elegant
derivation of the contracted Bianchi identities,

G“ﬁ; g =0. 4.25)

In this approach, Eq. (4.25) comes as a consequence of the invariance of S¢[g]
under a change of coordinates in 7.

To prove this it is sufficient to consider infinitesimal transformations,
x% = x = x% 4 €“, (4.26)

where € is an infinitesimal vector field, arbitrary within ¥ but constrained to
vanish on 8. The variation of the metric under such a transformation is

58ap = 8p(¥) — 8ap(x)

= 8ap (') ~ up(x) + g5 (X) — goa(x")

dxH BxV , ,
= 3 5B 8 () — 8ap (X) + 8o (%) — gup(x +€)

= (6% - Epfa)(s% - €ljﬁ)gpw(x) - gaﬁ(x) - gaﬁ,u(x)eu
= —-E”fag“'g - Elfﬁgau - gaﬁ,ueu
= _‘fegaﬁ,

discarding all terms of the second order in 2. Using Eq. (4.14) we find that the
metric variation is

agaﬁ — 60!;.3 4 E.B;U‘. (4.27)
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Substituting this into Eq. (4.20), we find
(87)8S¢ = [l ’ Gy p/—g d*x
= —f Ga‘g_ﬂea«/-g d4x -} % Gaﬁéa dEﬂ.
v ' 4

With € arbitrary within ¥ but vanishing on 8%, the contracted Bianchi identities
follow from the requirement that §S¢ = 0 under the variation of Eq. (4.27).

4.2 Hamiltonian formulation
4.2.1 Mechanics

The Hamiltonian formulation of Newtonian mechanics begins with the introduc-
tion of the canonical momentum p, defined by

dL

=35 (4.28)

p

It is assumed that this relation can be inverted to give g as a function of p and g.
The Hamiltonian is then

H(p,q)=pg— L. (4.29)

Hamilton’s form of the equations of motion can be derived from a variational prin-
ciple. Here, the action is varied with respect to p and g independently, with the
restriction that g must vanish at the endpoints. Thus,

o]
as:f §(p¢— Hydr
t

f o aH aH
:f (pqu-[—q&p———Bp————B)dt
] ap aq

2 f . 9H oH
+f —(p+—)8q+(é~~—)8p ds.
1 ! aq ap

Because the variations are arbitrary between #; and t,but8g(r)) = 8q(n) = 0, we
have

= pdq

oH aH
8§ =0 = p=-—— ] = —.
p 9q q ap
These are Hamilton’s equations. They are equivalent to the Euler-Lagrange equa-
tion (4.3).

(4.30)
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4.2.2 3 + 1 decomposition

The Hamiltonian formulation of a field theory is more involved. Here, the Hamil-
tonian H{p, g} is a functional of g, the field configuration, and p, the canonical
momentum, on a spacelike hypersurface ¥. To express the action in terms of the
Hamiltonian it is necessary to foliate #” with a family of spacelike hypersurfaces,
one for each “instant of time.” This is the purpose of the 3 + 1 decomposition.

To cffect this decomposition we introduce a scalar field £(x®) such that t =
constant describes a family of nonintersecting spacelike hypersurfaces ¥,. This
‘time function’ is completely arbitrary; the only requirements are that ¢ be a singlc-
valued function of x%, and that n, o ¢, the unit normal to the hypersurfaces, be
a future-directed timelike vector field.

On each of the hypersurfaces ¥, we install coordinates y?. A priori, the coordi-
nates on one hypersurface need not be related to the coordinates on another hyper-
surface. It is, however, convenient to introduce a relationship, as follows (Fig. 4.2).
Consider a congruence of curves y intersecting the hypersurfaces ¥;. We do not
assume that these curves are geodesics, nor that they intersect the hypersurfaces
orthogonally. We use / as a parameter on the curves, and the vector t* is tangent
to the congruence. It is easy to check that the relation

t%9.t =1 (4.31)

follows from the construction. A particular curve yp from the congruence defines
a mapping from a point P on %, to a point P’ on Xy, and then to a point P” on
2, and s0 on. To fix the coordinates of P’ and P”, given y?(P) on Z;, we simply
impose y*(P") = y*(P’) = y?(P). Thus, y* is held constant on each member of
the congruence,

This construction defines a coordinate system (¢, ¥?) in ¥. There exists a trans-
formation between this and the system x* originally in use: x* = x%(¢, y%). We

\P!I \ Q” E[n

Pl Q,r Ef’

2y
P \Q
/ Yo

144

Figure 4.2 Foliation of spacetime by spacelike hypersurfaces.
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[# 4
1o = (3" ) , (4.32)
at yﬂ'

[+
% = (zxa) (4.33)
Yo

to be tangent vectors on %,. These relations imply that in the coordinates (t, y*),
19 = 8% and ¢ = 8%. We also have

have

and we define

£ e% =0, (4.34)

which holds in any coordinate system.
We now introduce the unit normal to the hypersurfaces:

ng = ~Nayt, nges =0, (4.35)

where the scalar function N, called the lapse, ensures that n, is properly normal-
ized. Because the curves y do not intersect X, orthogonally, t* is not parallel to

n®. We may decompose % in the basis provided by the normal and tangent vectors
- (Fig. 4.3):

(* = Nn% 4 N%e%; (4.36)

the three-vector N is called the shift. It is easy to check that Eq. (4.36) is compat-
ible with Eq. (4.31).

We can use the coordinate transformation x* = x®(¢, y“) to express the metric
in the coordinates (¢, y*). We start by writing

dx® = 1% dr + 2 dy®

Figure 4.3 Decomposition of ¢ into lapse and shift.
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= (N dH)n® + (dy® + N? dr)e®

@’

which follows at once from Eqs. (4.32), (4.33), and (4.36). The line element is then
given by ds? = gpdx®dx?, or

ds® = —N2dt? 4 hop(dy” + N dr)(dy® + NP dp), (4.37)

where hap = gog ege{j is the induced metric on X,.

We may now express the metric determinant g in terms of 4 = det[hgp] and
the lapse function. We recall that g’ = cofactor(g;;)/g = h/g, as follows from
Eq. (4.37). But g" = g1 4t g = N™2g%nyng = —N~2, where Eq. (4.35) was
used. The desired expression is therefore

V=g = NVh. (4.38)

Equations (4.36), (4.37), and (4.38) are the fundamental resuits of the 3 + 1 de-
composition.

4.2.3 Field theory

We now return to the Hamiltonian formulation of a field theory. For si mplicity we
will assume that the field is a scalar, but the procedure can easily be applied to
fields of other tensorial types. We begin by defining the ‘time derivative’ of g to
be its Lie derivative along the flow vector ¢¢,

g=4%£q. (4.39)

In the coordinates (f, y*), £;q = 8q/8t, and ¢ reduces to the ordinary time deriva-
tive. We also introduce the spatial derivatives, 4.2 = g qe5. The field’s Lagrangian
density can then be expressed as .% (g, ¢, g.a)-

The field’s canonical momentum p is defined by

p= éa—q (\/—_é cs,ﬂ) (4.40)

It is assumed that this relation can be inverted to give g in terms of g, g 4, and p.
The Hamiltonian density is then

. q,90)=pg——g-Z. (4.41)

The presence of /=g in Eqgs. (4.40) and (4.41) implies that the Hamiltonian den-
sity is not a scalar with respect to transformations y* — y® . We might introduce
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e

Figurc 44 The region ¥, its boundary 9%, and their foliations.

a scalarized version #.,, defined by = /h gl = v ~8& Hearar/ N, but
such an object would turn out not to be as useful as the original, nonscalar, Hamil-
tonian density. The Hamiltonian functional is defined by

H(p, q] =j; H(p,q,q.q) 3y, (4.42)

The Hamiltonian functional is an ordinary (nonscalar) function of time r.

We consider a region ¥ of spacetime foliated by spacelike hypersurfaces ¥,
bounded by closed two-surfaces S, (Fig. 4.4); ¥ itself is bounded by the hyper-
surfaces ¥, X,,, and ., the union of all two-surfaces ;. To obtain the Hamilton
form of the field equations, we will vary the action with respect to ¢ and p, treat-
ing the variations 8¢ and 8p as independent. We will demand that 8¢ vanish on the
boundaries X4 Xty and A,

The action functjonal is given by

&
S:f dt | (pg— o) dy,
{1 p

and variation yields

& . G 0. 0.
6S:f dt[ (P5q+q5p— SP-—"—3q—~—5q,a)d3y-
f| Z; ap aq aQ:a

The first term may be integrated by parts:

L3
:f p3qd3y—/ p5qd3y—f dt[ pégdy
212 E"l & Zf
L)
f[ E;
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because g = 0 on X, and 2, We treat the last term similarly:

f dtf 8g o ddy = — f f a‘%a“a"“r 8qavhdly
f] E; qﬂ E; qﬂ ’
f2
— f dr % jfgcaldr 6 dSa
ty s} qﬂ
d ,
+f dtf ( “Zzg""‘““) Sgvhdy
f ) 9a Ja
2 0.3
:f d;f(ﬂ”) 5q Py.
{; ¥y aq,a \a

In the second line we have used the three-dimensional version of Gauss’ theorem,

with dS, denoting the surface element on ;. In the third line we have used the

divergence formula A9, = h~!/2(h'/2A%) ; and the fact that 8¢ vanishes on §,.
Gathering the results, we have

2 0 0 R
SS:f dtf —| p+ - —( ) bg+|g———1|8p}dy,
t z [ l:l ag 09,a a ! 1 ap

and

CE 9 3t
6§ =0 = p=- ,,go+(a(,50)

: g=—. (4.43)
ag 3q 4 a ap
These are Hamilton’s equations for a scalar field g and its canonical momentum
P
As a concrete example we consider once again a Klein-Gordon field y with its
Lagrangian density

% == (80 b+ my),

For qupllClty we choose our foliation to be such that N = 0, This implies g’
l/g”, =0, and gab — hab Then &% — _l(gttw?l 4 hcrl‘)lp' l,b',b +m21,Lr ),
— /g g"'y, and Eq. (4.41) gives
p?

jf:“zfgﬁ TG (a4 ).

The equations of motion are

. P . 2 — ,ab
w—_‘v—gg”’ p=- ~8m¢+(\/_éh Vf‘b),a

It j 1S easy to check that from these follow the Kiein—~Gordon equation, g®? Viapg —
m*f = 0, in the selected foliation.
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4.2.4 Foliation of the boundary

Before tackling the case of the gravitational field, we need to provide additional de-
tails regarding the foliation of 4, the timelike boundary of ¥, by the two-surfaces
S;. (Refer back to Fig. 4.4.)

The closed two-surface S; is the boundary of the spacelike hypersurface 2t
on which we have coordinates y?, tangent vectors ¢%, and an induced metric Agp.
It is described by an equation of the form $(y®) = 0, or by parametric relations
y2(64), where 64 are coordinates on S,. We use r,, to denote the unit normal to S,
and we define an associated four-vector r* by

r® =res. (4.44)

This satisfies the relations r%r, = 1 and r®n, = 0, where n% is the normal to %,.
The three-vectors e = 3y*/ 364 are tangent to Sy, so that rqey = 0. This implies
ro€%y = 0, where

L2, ox®
“afA = Hp4°

Hf

e (4.45)

In this equation it is understood that x® stands for the functions x* (y* (BA)), where
x%(y%) are the parametric relations describing %;.
The induced metric on S; is given by

ds? = oy d6A dO5, (4.46)
where oo = hgp eAe% = {gag e ef)eAeB or, using Eq. (4.45),

OAB = guf e%e‘z. (4.47)
Its inverse is denoted 4%, The three-dimensional completeness relations, h%° =

ragb 4 crABeje%, are easily established (see Section 3.1). It follows that the four-
dimensional relations, g%# = —n%nf 4 h"begeﬁ , can be expressed as

g% — %P 4y B oA eAe’?;. (4.48)

This can be verified by computing all inner products between the vectors n®, r%,
and e5.

The extrinsic curvature of §; embedded in ¥; is defined by kap = ”albeaAe?s (see
Section 3.4), or

kag = ra.g eﬁe’%. (4.49)

We use k to denote its trace: k = o A8k, .
A priori, the coordinates 64 on a given two-surface (Sy, say) are not related to
the coordinates on another two-surface (S,~, say). To introduce a relationship we
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consider a congruence of curves f running on 2, intersecting the two-surfaces S;
orthogonally, and therefore having n? as their tangent vectors. We demand that if
the curve Bp intersects Sy at the point P’ labelled by 64, then the same coordinates
will designate the point P” at which Bp intersects S;». Because 64 does not vary
along these curves, and because ¢ can be chosen as a parameter on the curves, we

have
ax“
¢ = N*‘( ) , (4.50)
81‘ f
where the factor N7! comes from Eq. (4.35) and the normalization condition
n“ng = —1. The construction ensures that n* and e are everywhere orthogonal,

The hypersurface Z is foliated by the two-surfaces S;. We place coordinates z*
on 4, and introduce the tangent vectors ¢ = 9x%/9z'. The induced metric on &
is then given by

Vij = gap . (4.51)
Its inverse is ¥*/, and the completeness relations take the form
g = rorf 4yl el (4.52)

While the coordinates 7' are a priori arbitrary, the choice z' = (¢, 84) is clearly
convenient. In these coordinates a displacement on 48 is described by

9x® Ix®
dx? = dt do4
( ot )QA + (aaA)

= Nn®dt + &5 do*,

where Eqs. (4.45) and (4.50) were used. The line element is
dsZy = gepdx® dx?
= gap(Nn® dt + €% do*)(NnP dr + ¢4 do¥)
= (gapn®nP) N2 di® + (gupeleh) doA d6?,
where the relation n, €% = 0 was used. We have obtained
yijdz' dzd = ~N?dt® + 045 d6A d6”. (4.53)

This implies /=y = N.4/o, where y and o are the determinants of y;; and 043,
respectively.

Finally, we let J%; be the extrinsic curvature of % embedded in the four-
dimensional spacetime. This is given by

Hi; = rap e‘aeﬁ (4.54)
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Table 4.1 Geometric quantities of Xy, Sy, and 2.

Surface 24 Sy B
Unit normal n® r r¢
Coordinates ¥ 64 Z
Tangent vectors e e e
Induced metric biap OAB Yij
Extrinsic curvature Kap kap i

because r,, the unit normal to the two-surfaces S;, is also normal to . We will
use £ to denote its trace: X = yi-"%j.

Table 4.1 provides a list of the various geometric quantities introduced in this
subsection.

4.2.5 Gravitational action

As a first step toward constructing the gravitational Hamiltoman, we must subject
the gravitational action Sg to the 3 4+ 1 decomposition described in Section 4.2.2.
~ Our starting point is Eq. (4.12),

(167)Sg = fﬂy R/=gd*x +2 ﬁ/ eK|h|M/? 33y,
d

where the subtraction term Sp is omitted for the time being; it will be re-instated
at the end of the calculation. Here, 3% is the closed hypersurface bounding the
four-dimensional region ¥, y® are coordinates on 3%, h,p is the induced metric,
K is the trace of the extrinsic curvature, and & = n%n,, where n% is the outward
normal to 87

Throughout this section the quantities %, y?, hgap, and Kqp have referred specif-
ically to the spacelike hypersurfaces ¥, and we need to be more precise with our
notation. We have seen that %" ’s boundary is the union of two spacelike hypersur-
faces X%, and ¥, with a timelike hypersurface & (Fig. 4.4):

a’j/ = E;z U (—‘E;l) UL@

The minus sign in front of ¥, serves to remind us that while the normal to 3%
must be directed outward, the normal to %,, is future-directed and therefore points
inward. With the notation introduced in the preceding subsection, the gravitational
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action takes the form

(167)Sc :f R./=gd*x —2f
v

=

K\/Ed3y+2f Kvhdy

9] Z![

-1—2] A=y d’z,
B

and the integration over X, incorporates the extra minus sign just discussed.

The region ¥ is foliated by spacelike hypersurfaces X, on which the Ricei
scalar is given by (Section 3.5.3)

R =R+ K®Kgp — K> = 2(n%pn? —n®n’). .

where *R is the Ricci scalar constructed from Agp. Using Eq. (4.38), which we
write as /—g d*x = NVhdt d3y, we have that

f R f— d4x__/ (3R+KabKab"K2)N'\/_d3
L5
—-2% (n B n%y ﬂ) dx,.

The new boundary term can be broken down into integrals over X;,, X;,, and 2.
On %, d%y = na\/ﬁd3y — this also incorporates an extra minus sign — and

-2 @ nf _n%n® Ydxm :—Zf
[, b = rtat)aza =2 |

3] Il

nf VR dy = -2f KVhdy.

X

We see that this term cancels out the other integral over X, coming from the
original boundary term in the gravitational action. The integrals over %, cancel out
also. There remains a contribution from %, on which dXq = rq+/—y 43z, giving

-2 fua(naﬂn —n? n )dEa = ~2f « n’Brm/—y d*z

b7}
== 2/ ra:ﬁn-anﬁf\f _y dBZJ
B

where we have used n%r, = 0.
Collecting the results, we have

f
(16m)S = f dtf CR + KKy — K))NVR Dy
£ P

—E—Zf ((%/-E—ra-,ﬁn“nﬂ)\/ﬂy d’z.
B
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We now use the fact that 28 ié foliated by the closed two-surfaces S;. We substitute
7 &3z = N Jo dt d?6 and express & as
H =y
=y (ra;p el ef)
= Ta:B (yije?e?)
= ra;,B(ga'B - rarﬁ),

so that the integrand becomes

H A+ 1o pnnP = ro.p(g® — r¥rF 4 n%nf)

= ra;ﬁ(UABeieg)

AB("ﬂ:ﬁeieg)
=0 Pkyp

= k.

=0

We have used Eqs. (4.48) and (4.52) in these manipulations. Substituting this into
our previous expression for the gravitational action, we arrive at

1 o
So = — | dt / (3R + KK — KQ)N\/Ed3y
16H £ ZI

+2 ¢ (k — ko) N/o d%6 } (4.55)
Y]

We have re-instated the subtraction term, by inserting kg into the integral over S;.
This is justified by the fact that the integral over ¥, vanishes for flat spacetime,
so that the sole contribution to Sg; comes from the boundary integral; the kp term
prevents this integral from diverging in the limit §; — 00, and it ensures that Sg
vanishes identically for flat spacetime. Thus,

ko = extrinsic curvature of S; embedded in flat space.

The ko term makes the gravitational action well defined for any asymptoticaily-flat
spacetime. For compact spacetime manifolds, this term is irrelevant.

The matter action should also be subjected to the 3 + 1 decomposition. Because
the procedure is straightforward, and because we would do well to keep things as
simple as possible, we shall omit this step here. In the remainder of this section we
will consider pure gravity only, and set the matter action to zero.
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4.2.6 Gravitational Hamiltonian

To construct the Hamiltonian we must express Sg in terms of

flab = £ hap, (4.56)

where t% is the timelike vector field defined by Eq. (4.36). We calculate this as
follows. First we recall the definition of the induced metric and write

iiab =4 (gaﬁegeg) = (ftgaﬁ)egeg,

where we have used Eq. (4.34). Equation (4.36) implies that the Lie derivative of
the metric is given by
£i8ap = la;p +Ipia
= (Nny + Na);ﬁ -+ (Nnﬁ + Nﬁ);a
= naN,,B + N,O.'”,B + N(”a;ﬁ + ”ﬁ;a) + No:;ﬁ -+ Nﬁ;as

where N* = N%eY. Finally, projecting this along egef gives
I:lab =2NKgp + Naib + Nbia,

where we have used the definitions of extrinsic curvature and intrinsic covariant
differentiation found in Section 3.4.
We have obtained

Kap = 5N (hab Nap — Nbla)- (4.57)

The gravitational action therefore depends on A, through the extrinsic curvature.
Notice that the action does nof involve N nor N, so that momenta conjugate to
N and N? are not defined. This means that unlike Ay, the lapse and the shift are
not dynamical variables. This was to be expected: N and N only serve to specify
the foliation of ¥ into the spacelike hypersurfaces ¥;; because this foliation is
arbitrary, we are completely free in our choice of lapse and shift.

The momentum conjugate to hgp is defined by

(\/_,ZG) (4.58)

P ahab

where % is the ‘volume part’ of the gravitational Lagrangian. (The ‘boundary
part’ is independent of f,p.) Because %5 is expressed in terms of Kgp, it is con-
venient to write Eq. (4.58) in the form

oKy, O
af.lab 3 Kmn

(167) p2 = (16n¢~_ggc),
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where
16m+/—g L6 = ['R + (Wh?® — h* b)Y Kap Ko ]INVR
follows from Eq. (4.55). Evaluating the partial derivatives gives
(16m)p = VR (K" — Kn®), (4.59)

and we see that the canonical momentum is closely related to the extrinsic curva-
ture.
The ‘volume part’ of the Hamiltonian density is

He = p™ hay — /=8 L. (4.60)
Using our previous results, we have
(16m)55 = vVh (K*” — Kh*®Y2NKap + Najp + Npjo)
— PR+ K*®Ku, — K2)NVR
= (K*Kap — K? = R)YNVR +2(K* — Kh®*)N,pvV/h
= (KKap — K> = RNV + 2[(K* ~ Kh*")N, ] /R
— 2(K% — Kh®®), Novh.

The full Hamiltonian is obtained by integrating %3 over ¥; and adding the bound-
ary terms: '

(16m) Hg :f 16705t &y — 2 ¢ (k — ko) N /o d%6
bR S

= f [N(K“”Kab — K% —"R) — 2N, (K — Kh””);b]ﬂ &y
E

+2¢ (KP — Kh**yN, dS, — 2% (k — ko) NJ/o d%6.
S, St

Writing dSp, = rp+/o d%6, the gravitational Hamiltonian becomes

(167)Hg :f

[N(K“"’Ka,c, — K2 Z3Ry — 2N, (K — Kh“”)w]\/ﬁd?’y
5,

— 255 [N(k — ko) — N,(K — Kh””)r;,].,;’o?dze. (4.61)
5

It is understood that here, Kgy, stands for the function of h,p and p%? defined by
Eq. (4.59); this is given explicitly by

VHK? = 167 (pab — % phf“"), (4.62)

where p = hgp p.
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4.2.7 Variation of the Hamiltonian

The equations of motion for the gravitational field are obtained by varying the
action of Eq. (4.55) with respect to N, N%, hgp, and p??, which are all treated as
independent variables. The variation is restricted by the conditions

SN =8N =8hyp =0 on §;, (4.63)

but there is no requirement that §p vanish on the boundary. As a preliminary step
toward calculating S, we will now carry out the variation of Hg. The computa-
tions presented here are rather formidable; the punch line is delivered in Eq. (4.73)
below.

We begin with a variation with respect to both N and N¢, Taking Eq. (4.63) into
account, Eq. (4.61) gives

(167)syHg = | (—C8N =26, sNY)WE dy, (4.64)
%

where
C =R+ K>~ K%Kap, Co=(KP—K8). (4.65)

This was easy; the remaining variations will require a much larger effort.

To carry out a variation with respect to fip, or p®’, we must express Hg in
terms of these variables, instead of s, and K?? as was done in Eq. (4.61). Using
Eq. (4.62), a few steps of algebra give

(16m)Hg = Hs, + Hs, (4.66)
where
fiy — / [Nh——l/Z(ﬁnbﬁab 152) — NRY2OR — 20,12 (n 12 ﬁab);b] 3y
Z

(4.67)

is the ‘volume’ term, while
s = —2 56 [Nk ko) = Neh ™' 5o, | /5 o2 (4.68)

S
ab —

is the ‘boundary”’ term. We have introduced the notation Hy; = (16m)Hy, p
(167) p“?, and so on; this usage was anticipated in Egs. (4.65).
We first vary Hg with respect to p?”. From Eq. (4.67) we have

Sptls =[E NE™Y28, (5% pap — 45 )d3y—25pf No(h™'72 p*°) 0112 &y.
t

b

We substitute

85 (P Pap — 2°) = 2(Pab — %P har)8 P
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inside the first integral, and we integrate the second by parts. This gives

31,1@'): = fz 2[ lﬂ(pab - "p hap) + N(a[b)]SP & ¥

— 255 Noh™ 1280, /o d20.
S

The boundary term is precisely equal to (iminus) the variation of Hs. We therefore
have obtained

SPHG:L Hap 8p°° &y, (4.69)
t

where

I\JI'—'

Hap = 2NR1/2 (ﬁab ) + 2N(app).- (4.70)

To vary Hg with respect to hgp is more labourious, and we will rely on compu-
tations already presented in Section 4.1. We begin with the volume term:

S Hx :f [—Nh— (5% Pab — 55°)8uh /> + Nh™V28,, (50 pap — 1 p7)
bt

~ N8R aPy — 25 jg Nah ™2 pobr, /7 &2
S

+ 28, f Napp % dy,
=

in which the last term on the right-hand side of Eq. (4.67) was integrated by parts,
The variation of the integral over S, vanishes because g, is fixed on the boundary.
In the first term within the integral over X, we substitute

1

Suh'/? = 7 B h 8 hap,

while in the second term,
ah(pabﬂ 1 ﬂ2) 2(»-a ﬁCb zppab)ahab
In the third term, we use the three-dimensional version of Eq. (4.16),
8u(h'2°R) = —h'?G5hyy + h'1? 505,

where G?? = R0 — %3R ha? is the three-djmensional Einstein tensor and §v¢ =
hePSTC , — hsTt  Finally, in the last term we substitute

ShNalb = Nﬁbghac + hacNd(SFde
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After a few steps of algebra we obtain
5 Hls: = L,[’%N’I"I/Z(ﬁ‘dﬁcd = 3B°)H + 2NRTV2 (55, B — 55 5)
+ Ni'2Gt 4 257N | by Py
+ th[ NA'2 805, + 255 N98TS | oy,

We now leave the first integral alone and set to work on the second integral,
beginning with the first term. After integrating by paits,

- Nh'ﬁau",c(ﬁy:f

N 8v°h'? 3y — % N8v°re /o d*0
El Er Sf

= f N Svh!?2 By + % NhPShgy oS /a 820,
b S

where the three-dimensional version of Eq. (4.17) was used. To express the first
integral in terms of 8h,5 we use the relation

1
8T = 5 W[ Bhaa)ip + Bhav)ic — Ghap)ia],

which is easy to establish. (Note that the covariant derivative is defined with respect
to the reference metric 44p, about which the variation is taken.) We have

1

fuv¢ = E (hathd — hachbd)[(rShda)lb + (5hdb)la - (‘Shab)td]

and then
1
N 8v° = 5 (h"bN'd — N‘ahbd)[(Sh'da)lb + (8hap)ja — (Shap)ia]
— __(habN,d _ N,ahhd)(shab)ld,

the second line follows by virtue of the antisymmetry in a and d of the first factor.
After another integration by parts we obtain

- L N 2505 Py = f (R NY, — N1®)shaph'/? &y
t %

+ f Nh®8hap,or° /o d°6,
S

where we have used the fact that 84, vanishes on S;. All this takes care of the first
term inside the second integral for 8§, Hy,. We now turn to the second term inside
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the same integral. We have

f 258 NISTS,, &Py = f PN (Shap)id + Ghad)ip — (Bhpa)ia] 'y
3%

%

— f h Y2 BN (Shap)ah 2 APy
0

[ (h—lfz ﬁabNd)[d Sha[)hlfz d3y,
2t

where we have integrated by parts and put 8k, = O on .
Gathering the results, we find that the variation of the volume term is

SnHy, = f Pk 3y + f Nh*§hgy, orC /T 426,
poM S5t

where 7% will be written in full below. On the other hand, variation of the bound-
ary term gives

SpHs = —2 f N8k /o d20,
St

and 8k = %h“%hab,crc is the three-dimensional analogue of a result previously
derived in Section 4.1.5. Thus,

SuHs = — @ Nh®8hgy, /=0 &%,
St

and this cancels out the boundary integral in 8, Hy,. The variation of the full Hamil-
tonian is therefore

S Hg = g P 8hay dy, 4.71)
where
ﬁab — Nhl/ZGab N lNh—l/Z(ﬁcdﬁcd )h“b 4+ OINK™ I/Z(ﬁa lAbC %ﬁﬁ )
_hl/Z(Nlab abN|c) 1/2(h~1/2 ﬁach)lc_!_zﬁc(aN " (4.72)
Here, as before, G% = R% — 13R pb is the three-dimensional Einstein tensor.

Combining Eqs. (4.64), (4.69), and (4.71) we find that the complete variation of
the gravitational Hamiltonian, under the conditions of Eq. (4.63), is given by

5 Ho — f (P hat, + Has 8p™ — C5N - 2C, 5N°) &y, (4.73)
2y

where P = Pab /(167) is given by Eq. (4.72), Hap by Eq. (4.70), while C =
C/(167) and C¢ = C?/(167) are given by Eq. (4.65).
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4.2.8 Hamiltor’s equations

The equations of motion are abtained by varying the gravitational action, expressed

as
5] .
Se :f df[f Pl by &Py — HG],
f por

with respect to the independent variables N, N®, hyp, and p?. Variation yields

) . .
88 = f dt[f (pab Shap + hap 8p“b) d3y - (‘)‘Hg},
1 ¥

where §Hg is given by Eq. (4.73). After integrating the first term by parts we
obtain

I .
885G = f dr f [(hab — Hap) 8p°" = (5°° + P*) 8has
{1 E,‘
+CON +2C, SN“] B3y, (4.74)
Demanding that the action be stationary implies

Chap =Hap, pP=-P% (=0, C=0. (4.75)

These are the vacuum Einstein field equations in Hamiiton form. The first two
govern the evolution of the conjugate variables fqp and p®?; it is easy to check
that fzab = Hgap just reproduces the relation between liab and p“b implied by
Eqs. (4.57) and (4.62). The last two are the constraints equations first derived in
Section 3.6; the relations C = 0 and C, = 0 are usually referred to as the Hamilto-
nian and momentum constraints of general relativity, respectively.

The Hamiltonian formulation of general relativity suggests the following strat-
egy for solving the Einstein field equations. First, select a foliation of spacetime
by specifying the lapse N and the shift N¢ as functions of x® = (¢, y°); the choice
of foliation is completely arbitrary. Defining %,4p to be the induced metric on the
spacelike hypersurfaces, the full spacetime metric is given by Eq. (4.37):

ds? = —N2df? + hgp(dy® + N*dt)(dy? + N dr). (4.76)

Next, choose initial values for the tensor fields hqp and Ky, where K,y is the
extrinsic curvature of the spacelike hypersurfaces. This choice is not entirely arbi-
trary because the constraint equations must be satisfied: The initial values must be
solutions to

R+ K2—KPKy =0, (K —Kh")y =0, 477)



146 Lagrangian and Hamiltonian formulations of general relativity

where 3R is the Ricci scalar associated with qp, and K = h9° K ;. Finally, evolve
these initial values using Hamilton’s equations, h, = Hap and pob = —pab,
which may be written in the form (Section 4.5, Problem 4)

-

hap = 2N Ky + £nhap ' (4.78)

and

Kab = Niap — N(Rap + K Kap — 2K, Kpe) + £ K ap. (4.79)

In these equations, the Lie derivatives are directed along N, the shift vector. This
formulation of the vacuum field equations, usually referred to as their 3 + 1 de-
composition, is the usual starting point of numerical relativity.

4.2.9 Value of the Hamiltonian for solutions

We now return to Eq. (4.61) and ask: What is the value of the gravitational Hamil-
tonian when the fields 4,4, and Kgp satisfy the vacuum field equations (4.77)—
(4.79)? The answer 1s that by virtue of the constraint equations, only the boundary
term contributes to the solution-valued Hamiltonian:

, 1
Hpltion —a é [N(k — ko) — No(K* — K h"”)rb]ﬁ d%6. (4.80)

As was discussed previously, this boundary term is relevant only when the space-
time manitold is noncompact. For compact manifolds, Hgf’l“ti““ = (. The physical
significance of HEPMUOR for asymptotically-flat spacetimes will be examined in the
next section.

4.3 Mass and angular momentum
4.3.1 Hamiltonian definitions

It is natural to expect that the gravitational mass of an asymptotically-flat space-
time — its total energy — should be related to the value of the gravitational Hamilto-
nian for this spacetime. We will explore this relation in this section, and motivate
another between the Hamiltonian and the spacetime’s total angular momentum.
The solution-valued Hamiltonian, Hé‘”““"“ given by Eq. (4.80), depends on the
asymptotic behaviour of the spacelike hypersurface ¥, and on the asymptotic
behaviour of the lapse and shift. While the lapse and shift are always arbitrary,
the fact that the spacetirne is asymptotically flat gives us a preferred behaviour
for the hypersurfaces. We shall demand that 2, asymptotically coincide with a
surface of constant time in Minkowski spacetime: If (7,x,¥,%) is a Lorentzian
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frame at infinity, then the asymptotic portion of ¥, must coincide with a sur-
face = constant. In this portion of %,, the (arbitrary) coordinates y“ are re-
lated to the spatial Minkowski coordinates, and we have the asymptotic relations
y* = y(x, ¥, 2); similarly, x¥ —» x*(t, %, ¥, 7). We note that ¢ is proper time for
an observer at rest in the asymptotic region, and infer that this observer moves with
a four-velocity «® = 9x*/8tf. Because this vector is normalized and orthogonal to
the surfaces f = constant, it must coincide with the normal vector n®, and we have
another asymptotic relation, n% — 9x“/97. Substituting this into Eq. (4.36) gives

us
5 (44
), ()

an asymptotic relation for the flow vector. This shows that once the asymptotic
behaviour of ¥, has been specified, there is a one-to-one correspondence between
a choice of lapse and shift and a choice of flow vector. The solution-valued Hamil-
tonian can then be regarded either as a functional of N and N, or as a functional
of t%.

We shall define M, the gravitational mass of an asymptotically-flat spacetime,
to be the limit of Hé“l““““ when §; is a two-sphere at spatial infinity, evaluated
with the following choice of lapse and shift: N = 1 and N® = 0. From Eq. (4.80),

1
M=—— lim ¢ (k- koo d26. (4.81)

¥4 S;—-)OO Sr

Here, o4p is the metric on S;, k = 048k, p is the extrinsic curvature of S, em-
bedded in X,, and kg is the extrinsic curvature of S embedded in flat space. The
quantity defined by Eq. (4.81) is called the ADM mass of the asymptotically-flat
spacetime; the name refers to the seminal work by Arnowitt, Deser, and Misner.

The choice N = 1, N = 0 implies that asymptotically, t* — 3x%/3f, so that
the flow vector generates an asymptotic time translation. The ADM mass is then
Just the gravitational Hamiltonian for this choice of flow vector, and we have made
a formal connection between total energy and time translations. This connection
is both deep and compelling, and it can be adapted to give a definition of total
angular momentum. Indeed, the gravitational Hamiltonian should provide a sim-
ilar connection between angular momentum and asymptotic rotations, which are
Characterized by t* — ¢* = 3x°/d¢, where ¢ is a rotation angle defined in the
aSymptotic region in terms of the Cartesian frame (%, y, z). This corresponds 10
the choice ¥ = 0, N7 = ¢“ = dy?/a¢ of lapse and shift.

We shall define J, the angular momentum of an asymptotically-flat spacetime,
[0 be (minus) the limit of H&O“‘tio“ when §; is a two-sphere at spatial infinity,
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evaluated with N = 0 and N? = ¢¢, From Eq. (4.80),

|
87{ Sl—*)OO Si

The minus sign was inserted to recover the usual right-hand rule for the angular

momentum. Notice that this definition of angular momentum refers to a specific

choice of rotation axis, and ¢ is the angle around this axis.

4.3.2 Mass and angular momentum Jor stationary, axially
symmetric spacetimes

To show that these definitions are in fact reasonable, we shall calculate M and J
for an asymptotically-flat spacetime that is both stationary and axially symmetric.
In the asymptotic region r > m, the metric of such a spacetime can be expressed
as

2 2 47 sin? @
ds? — —(1 - ﬁ) dr + (1 + —’f)(drz +r2d0%) — L2 drdg, @483)
r r

where m and j are the spacetime’s mass and angular-momentum parameters, re-
spectively. We will show that M — m and J = j, and thus confirm that the Hamil-
tonian definitions -are well founded. We note that the validity of this metric in
the asymptotic region could always be used to define mass and angular momen-
tum. Our Hamiltonjan definitions are more powerful, however, because they do
not involve a particular coordinate system, and they stay meaningful even when
the spacetime is not stationary or axially symmetric.

We choose the hypersurfaces %r to be surfaces of constant t, and n, =
~(1 —m/r)d,t is the unit normal. (Throughout this calculation we work consis-
tently to first order in m/r.) The induced metric on 2. is given by

hap dy® dy® = (1 + Z_m_) (dr2 + r? sz).
r

The boundary S; is the two-sphere r = R, and the limit R ~— oo will be taken at
the end of the calculation. Its unit normal is fa = (1 +m/r)d,r and

o4pdod deB — (1 + %)degz

gives the two-metric on ;. :

To evaluate M we must first calculate k. This 1s given by k = r, and a brief
calculation yields k = 2(1 - 2m /R)/R. To this we must subtract ko, the extrinsic
curvature of a two-surface of identical intrinsic geometry, but embedded in flat
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space. On this surface,
ol g 0" do® = R? 402,

where R'= R(I+m/R) so that o3y =045 We have ky=2/R =
2(1 —m/R)/R and simple algebra yields k — kg = ~2m/R2. On the other hand,
Vo d%0 = R?(1 + 2m/R) sin 6 d6 d¢, and substitution into Eq. (4.81) yields

M =m, (4.84)

the expected result.
To evaluate J we must first calculate Kal,qb“r” = Kg,(1 = m/r), where K, =

Ny, g eg‘eb. (The second term in the integrand, K hag,qﬁ“rb, vanishes because the
vectors r and ¢ are orthogonal.) The relevant component of the extrinsic curva-
ture is Ky = (1 — m/r)F’qb,.. Using

2 2j
g”-——-—(l—l-—m), gtqb:__;;_’
¥ r
we find that ', = —3j sin® 6/r2 and this gives Ky, = —37 sin@/R2. Substitut-
ing this into Eq. (4.82) yields J = (3j/4) [T sin> 6 d6, or
J =, . (4.85)

the expected result.

4.3.3 Komar formulae

An appealing feature of the Hamiltonian definitions for mass and angular momen-
tum is that they do not involve a specific choice of coordinates. Alternative defini-
tions that share this property can be produced for stationary and axially symmetric
spacetimes. These are known as the Komar Jormulae, and they are

1
=g sl 6, V5 i (4.86)
and
L aph
= T i, §, Vil s (487

Here, E(Cf) is the spacetime’s timelike Killing vector and 5@ 18 the rotational Killing
vector; they both satisty Killing’s equation, & + £g.4 = 0. The surface element
is given by (Section 3.2.3)

dSeg = —2n(qrpv/a 476, (4.88)

where 1, and ry are the timelike and spacelike normals to S;, respectively.
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To establish that these formulae do indeed give M =m and J = j, we must
prove that for the spacetime of Eq. (4.83), the relations

—2VEf narg = —2m/r2 =k — ky, VOEE narg = Kapgrt
hold in the limit r — co0. We begin with the first relation:
—Zvagg)narﬂ = Zég);ﬁnarﬁ
¥
= ZF%ynar‘Béﬁ)
= —2(1 —2m/r)l,
= —-2m/r2,
as required. We have used Killing’s equation in the first line, and inserted n, =
~ —m/r)dyt, r* = rieq = (1~ m/r)ox®/ar, and IMo=m@+ 2m/r)/r? in
the following steps. To establish the second relation requires less work:
V“Sfﬁ)narﬁ = —gé);ﬁnarﬁ
= ‘E&)na:ﬁrﬁ
= nasp(d” e) (¥ e}
= (”a:ﬁ egebﬁ)¢arb
— Kabqsﬂrb‘
Once again, Killing’s equation was used in the first line. The second line follows

from the fact that the Killing vector is orthogonal to n®. In the third line the vectors

éf(‘fp) and rf were decomposed into the basis e%. Finally, the last line follows from
the definition of the extrinsic curvature. These computations prove that the defini-
tions of Eq. (4.86) and (4.87) do indeed imply M = m and J = j. We see that for
stationary and axially symmetric spacetimes, the Komar formulae are equivalent
to our Hamiltonian definitions for mass and angular momentum,

The Komar formulae can be turned into hypersurface integrals by invoking

Stokes’ theorem (Section 3.3.3),

fB“ﬁ dSup = 2] B a3,
S z

where B“# is an antisymmetric tensor field and S is the two-dimensional boundary
of the hypersurface ¥.. This is possible because when £ is a Killing vector, the
tensor B = vegh ig necessarily antisymmetric. We have

By = (VEP)ip = —(VPE")p = g7,
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where [J = V®V,. Using the fact that ali Killing vectors satisfy [16% = —R®. el
(Section 1.13, Problem 9), we have established the identity

?gsv“gﬁ dSep = 2[ R%EP d%,.

Because the hypersurface 2 is spacelike, we have that d%, = —ny+/% d®y. Using
the Einstein field equations we then obtain

]
% V“é}ﬁ dSaﬁ = —167[[ (Taﬁ — -2— Tgaﬁ)nagﬁﬁ&y.
§ =

Finally, combining this with Eqs. (4.86) and (4.87), we arrive at

i

and

1
J = — f (Taﬁ -3 Tgaﬁ)nagg)ﬁ d’y. (4.90)
x

In these equations, X stands for any spacelike hypersurface that extends to spatial
infinity. If 3 had two boundarics instead of just one, then an additional contribu-
tion from the inner boundary would appear on the right-hand side of Eqgs. (4.89)
and (4.90). Such a situation arises when the stationary, axially symmetric space-
time contains a black hole (see Section 5.5. 3).

It is a remarkable fact that M and J are defined fundamentally in terms of
integrals over a closed two-surface at infinity. These quantities should therefore be
thought of as properties of the asymptotic structure of spacetime. It is only in the
case of stationary, axially symmetric spacetlmes that M and J can be defined as
hypersurface integrals.

4.3.4 Bondi-Sachs mass

The ADM mass was constructed in Section 4.3.1 by selecting a closed two-surface
St = S(t, r), integrating k — kg over this surface, and then taking the limit » — 0o,
Thus

1

1
Mapm(1) = — — (k — kg)/o d°6. (4.91)
T JS(t,r—00)
Here, § (¢, r) denotes a surface of constant ¢ and » which becomes a round two-
Sphere of area 4772 as r —» co. This limit, which is taken while keeping ¢ fixed, is
What defines ‘spatial infinity.’
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There exists another way of reaching infinity, and to this new limiting procedure
corresponds a distinct notion of mass. This is the Bondi-Sachs mass, which is
obtained by taking S(¢, r) to ‘null infinity’ instead of spatial infinity. To define
this we introduce the null coordinates u = t — r (retarded time) and v =¢ +r
(advanced time). In these coordinates, a two-surface of constant ¢ and r becomes
a surface of constant 4 and v, which we denote S(u, v). Null infinity corresponds
to the limit v — oo keeping u fixed, and the Bondi-Sachs mass is defined by

Mps(u) = ——— (k — ko)+/o d%6. (4.92)
87 S(u, v—>00)

The physical importance of the Bondi-Sachs mass comes from the fact that when

an isolated body emits radiation (in the form, say, of electromagnetic or gravita-

tional waves), the rate of change of Mps(u) is directly related to the outward flux

of radiated energy. If F denotes this flux, then the Bondi-Sachs mass satisfies

dM
BS _ p_?ﬁ F/o d%. (4.93)
du S, v—00)

Thus, the mass of a radiating body decreases as the radiation escapes to infinity.
The proof of this statement is rather involved: it can be found in the original papers
by Bondi, Sachs, and their collaborators.

4.3.5 Distinction between ADM and Bondi-Sachs masses: Vaidya spacetime

For stationary spacetimes, the ADM and Bondi--Sachs masses are identical® there
is no distinction. For the dynamical spacetime of an isolated body emitting gravi-
tational (or other types of) radiation, the two notions of mass are distinet. For such
a system the Bondi--Sachs mass decreases according to Eq. (4.93), while the ADM
mass stays constant.

The metric of a radiating spacetime is difficult to write down; usually it is ex-
pressed as a messy expansion in powers of 1/r. We shall not attempt to deal with
these complications here. For the purpose of illustrating the difference between
the ADM and Bondi-Sachs masses, we shall instead adopt a simple spherically-
symmetric model. Consider the Schwarzschild metric expressed in terms of the
null coordinate 4 =t — r — 2M In(r/2M — 1), and allow the mass parameter M
to become a function of retarded time: M — m(u). This new meltric is given by

ds® = — fdu® ~2dudr +r2dQ%,  f=1—2m@)/r, (4.94)

and it is a good candidate to represent a radiating spacetime. To see if it makes a
sensible solution to the Einstein field equations, let us examine the Einstein tensor,
whose only nonvanishing component is G, = —(2/r2)(dm/du). This means that
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the stress-energy tensor must be of the form

where I, = —d,u is tangent to radial, outgoing null geodesics. This stress-energy
tensor describes a pressureless fluid with energy density p = (—dm/du)/(47r?)
moving with a four-velocity /“. Such a fluid is usually referred to as null dust;
it gives a good description of radiation in the high-frequency, geometric-optics
approximation. It is easy to check that the form (function of u)/r? for the energy
density is dictated by energy-momentum conservation. You may also verify that
all the standard energy conditions are satisfied by Ty if dm /du < 0, that is, if m
decreases with increasing retarded time. We conclude that the metric of Eq. (4.94),
called the outgoing Vaidya metric, makes a physically reasonable solution to the
Einstein field equations.

We wish to compute the ADM and Bondi-Sachs masses for the Vaidya space-
time. The first step is to select a spacelike hypersurface T bounded by a closed
two-surface §; this hypersurface must asymptotically coincide with a surface
t = constant of Minkowski spacetime. A suitable choice is to let & be a surface of
constant t = u + r, for which the unit normal

ng =—@2— £ Y2 8, (u +r)
is everywhere timelike. From Eq. (4.94) we obtain that the induced metric on T is
hap dy? dy? = (2 — £)dr? + 72402

For § we choose the two-sphere r = R, where R is a constant much larger than the
maximum value of 2m(u); eventually we will take the limit R — oo. Recall that
spatial infinity corresponds to keeping ¢ fixed while taking the limit (which means
that u — —00), whereas null infinity corresponds to keeping u fixed while taking
the limit. The unit normal on S is r; = (2 — f)lf’2 d,r, and the induced metric is
oap d04d6® = R?4Q2.

First we calculate

M(S) = L %(k — ko)+/o %0
8r Js

for the bounded two-surface S; the two different limits to infinity will be taken
next. The extrinsic curvature of S embedded in ¥ is calculated as

_a _2[,, 2m@) TV 2[ _ m(@) _2}
k-——rla—-—E[l-}— R } “‘El R +O(R )’
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and the extrinsic curvature of § embedded in fat space is kg = 2/R. Subtract-
ing, we have that k — kg = —2m (u)/R? + O(R™%) and integrating over S yields
M(S) = m(u) + O(R™1),

We may now take the limit R — oco. As was mentioned previously, the ADM
mass 1S obtained by keeping r = u + R fixed while taking the limit. This gives

Mapm(t) = m(—~00), (4.96)

and we see that the ADM mass is a constant, equal to the initial value of the mass
function. We may therefore say that Mapwm represents alf the mass initially present
in the spacetime. (This interpretation is quite general and not limited to this specific
example.) For the Bondi-Sachs mass we must keep u fixed while taking the limit.
This gives

Mps(u) = m(u), (4.97)

and we see that the Bondi-Sachs mass is identified with the mass function of the
Vaidya spacetime. It decreases in response to the outflow of radiation described by
the stress-energy tensor of Eq. (4.95). Notice that the field equation

d
H’E_ == —471'?‘2Tuu = —47rr2(——T';) = —~4nr?F

is compatible with the general mass-loss formula of Eq. (4.93).

It may appear paradoxical that the ADM mass of a dynamical spacetime should
be a constant. This, however, is what should be expected of a radiating spacetime
(Fig. 4.5). The ADM mass represents all the mass present on a spacelike hypersur-
face of constant 7. This hypersurface intersects the central body whose mass does
decrease as a consequence of radiation loss. But this does not mean that the ADM
mass should decrease, because the hypersurface intersects also the radiation, and
the ADM mass accounts for both forms of-energy. The net result is a conserved
quantity. On the other hand, the Bondi-Sachs mass represents all the mass present

constant

AN \/ /1 = constant

radiating mass

Figure 4.5 A radiating spacetime.
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on a null hypersurface of constant u. Because this hypersurface fails to intersect
any of the radiation that was emitted prior to the retarded time «, the net result is a
quantity that decreases with increasing retarded time.

4.3.6 Transfer of mass and angular momentum

We shall now derive expressions for the transfer of mass and angular momentum
across a hypersurface 3; in a stationary, axially symmetric spacetime,
To begin, consider the vector fields

_ 8 o _ o B
o= ThE,  =TEl (4.98)

where T is a rest stress-energy tensor that does not influence the Spacetime ge-
ometry. According to the definition of the stréss-energy tensor, €% can be inter-
preted as an energy flux vector, while £¢ is interpreted as an angular-momentum
flux vector.

To see this clearly, consider the simple case of dust, a perfect fluid with stress-
energy tensor 7% — puuf where P 1s the rest-mass density and u“ the four-
velocity. Energy-momentum conservation implies that «% satisfies the geodesic
equation, and that j* = pu® is a conserved vector: J% = 0. This vector can be
interpreted as the dust’s momentum density, or equivalently, as a rest-mass flux
vector. Then ¢% = E’j“ and~£“ = f,j“, where £ = —uaég) is the conserved en-
ergy per unit rest mass and 7, = ”a‘sf:b)fhe conserved angular momentum per unit
rest mass. (As we have indicated, both £ and . are constants of the motion.) These
relations show quite clearly that &® represents a flux of energy density, while £2 is
a flux of angular-momentum density.

The vectors ¢* and £% are divergence-free. For example,

€% = _Ta‘?a Eng + T Egypia = 0

the first term vanishes by virtue of cnergy-momentum conservation, and the second
vanishes because ;e 1S an antisymmetric tensor field. This implies that the
integra] of £ or £ over a hypersurface 9% enclosing a four-dimensional region
¥ is identically zero. For example,

¢ e*d%, = 0.
ar

This €quation states that the total transfer of energy across a closed hypersurface

97 is zero. This is clearly a statement of conservation of total energy — or total
mass,
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The boundary 3% can be partitioned into any number of pieces. If one such
piece is the hypersurface X, then the integral of €% over & represents the mass
transferred across this piece of 8% . Thus,

AM = — f T% & ds, (4.99)
by

is the mass transferred across the hypersurface ¥, and similarly,

AJ = f %5(fb)dza (4.100)
by

is the angular momentum transferred across 3.

For illustration, let us return to our previous example, and let us choose ¥ to be
spacelike and orthogonal (o the vector field u®. Then d%y = —uq+/7 d%y and we
find that AM = fE E‘pﬁd?’y and AJ = [, Lok dy. The first equation states
that the transfer of energy across 3 is the integral of £ p, the energy density. The
second equation comes with a very similar interpretation.

4.4 Bibliographical notes

During the preparation of this chapter I have relied on the following references:
Arnowitt, Deser, and Misner (1962); Bondi, van der Burg, and Metzner (1962),
Brown and York (1993), Brown, Lau, and York (1997); Carter (1979); Hawking
and Horowitz (1996); Sachs (1962); Sudarsky and Wald (1992); and Wald (1984).

More specifically:

An overview of the Lagrangian and Hamiltonian formulations of general rela-
tivity is given in Appendix E of Wald. The Hainiltonian formulation was initiated
by Arnowitt, Deser, and Misner, who also introduced the ADM mass. Early treat-
ments of the Hamiltonian formulation often discarded the all-important boundary
terms; careful treatments are given in Sudarsky and Wald, Brown and York, and
Hawking and Horowitz. (Problem 7 below is based on this last paper.) The Hamil-
tonian definitions for mass and angular momentum are taken from Brown and
York; the discussion of Section 4.2.4 is also based on their paper. Sections 4.3.3
and 4.3.5 are based on Carter’s Sections 6.6.1 and 6.6.2, respectively. The Bondi-
Sachs mass was introduced by Bondi and his collaborators in an effort to ptit the
notion of gravitational-wave energy on a firm footing. The definition given in Sec-
tion 4.3.4 is due to Brown, Lau, and York. I would like to point out that the first
occurrence of the (k — kg) formula for the ADM mass can be found in a 1988
paper by Katz, Lynden-Bell, and Israel.
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Suggestions for further reading:

The numerical integration of the Einstein field equations is currently one of the
most active areas of research in gravitational physics. While the starting point of
most numetical methods is the 3 + 1 decomposition of the field equations pre-
sented in Section 4.2.8, the story by no means ends there. For its comprehensive
review of various methods and its summary of the field’s achievements, the 2001
article by Lehner is a very useful reference.

We have seen that the gravitational action, and the gravitational Hamiltonian,
must include a subtraction term in order to be well defined for asymptotically-flat
spacetimes. The subtraction term, however, is not unique, and alternative propos-
als were put forth by Mann (1999 and 2000) and Lau (1999). Generalizations (o
spacetimes that are not asymptotically flat have been considered, mostly in the
context of spacetimes with a negative cosmological constant; see the 1999 paper
by Kraus, Larsen, and Siebelink.

Who was the first to discover the field equations of general relativity: Einstein
or Hilbert? The story used to be that after formulating a variational principle for
general relativity, Hilbert published the field equations first, just a few days before
Einstein did (on November 25, 1915). Recent historical investigation reveals, how-
ever, that Hilbert did not, in fact, anticipate Einstein. The revised story is told by
Corry, Renn, and Stachel (1997).

4.5 Problems

1. The Lagrangian density for the free electromagnetic field is

1
b= ——— [ g,
167 op

where Fug = Ag.q — Ag;p is the Faraday tensor, expressed in terms of the
vector potential Ag.
(a) Derive the Maxwell field equations in vacuum, F aﬁf g = 0, on the basis
of this Lagrangian density.
(b) Show that the stress-energy tensor for the electromagnetic field is given
by
Ty = ——(FapFJ —  gug F™'F
afﬁ-“4 ( apt'g 4gafﬁ ,u,v)-

T

2. The Lagrangian density for a point particle of mass m moving on a world line

Z¥(A) is given by
L= —m f J—gapi®if 84 (x, 2) A,
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where 84(x, x") is a four-dimensional, scalarized 8-function satisfying

f 84(x, x ) —gdtx =1
'%/

if x’ is within the domain of integration; we also have z* = dz%/dA, and the

parameterization of the world line is arbitrary.

(a) Derive an expression for the stress-energy tensor of a point particle. To
simplify this expression, set dA = dt (with T denoting proper time on
the world line) at the end of the calculation,

(b) Prove that when it is applied to a point particle, the statement Tc“,3 g= 0
gives rise to the geodesic equation for u® = dz" /dr. ’

(¢) Explain whether the result of part (b) constitutes a valid proof of the state-
ment that the Einstein field equations predict the motion of a massive
body to be geodesic.

Calculate the gravitational action Sg for a region ¥ of Schwarzschild space-

time. Take 7" to be bounded by the hypersurfaces Xy, , X;,, X, and 3., where

X¢; (X4,) 18 the spacelike hypersurface described by ¢ = 1| (t = #), and where

YR (2,) 18 the three-cylinder at r = R (r = p). Here, 2M < p < R. At the

end of the calculation, take the limits R — oo and p — 2M.

Derive Eq. (4.79), the evolution equation for the extrinsic curvature. You may

use p?® = — P4 as a starting point, or proceed from scratch with the definition

Kap = £ (ng.ges ef ). [Either way, the calculation 1s tedious! You may want to
consult York (1979).]

Recall that in Section 3.6.5 we introduced a mass function m(r) that deter-
mines the three-metric of a spherically symmetric hypersurface. Prove that

——8—17; (k—ko)\/gdzf?:r(l—-\/I—Zm/r),

S(r)

where S(r) is a two-surface of constant r. Use this to show that m{oo) is the

ADM mass of this hypersurface,

In this problem we explore some consequences of Eq. (4.89), which gives an

expression for the ADM mass of a stationary spacetime,

(a) Prove that the right-hand side of Eq. (4.89) is independent of the choice
of hypersurface 2.

(b) Show that if 7% is the stress-energy tensor of a static perfect fluid, then
Eq. (4.89) reduces to

M= f (0 +3p) OV Yy,
Yy
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where p is the mass density, p the pressure, and e*® = gaﬁé(,)é(t)
[Hints: A perfect fluid is static if its four-velocity u® is parallel to é,( 0
You may assume that the spacetime also is static.]

(¢) Specialize to spherical symmetry, and write the spacetime metric as

ds? = —e?®dr® + (1 = 2m/r) "' ar? 4 #2492,

in which ® and m are functions of r. Refer back to the result of Prob-
lem 5 and deduce the identity

f p(l—-2m/r)1/2dV=f(p+3p)e¢dV,
Y X

where dV == +/h d3 ¥ is the invariant volume element on the hypersur-
face ..

(d) Specialize now to a weak-field situation, for which the metric can be
expressed as

ds? = —(1 +2®) de® + (1 - 20)(dx? + dy? + dz?);

the Newtonian potential ® is a function of 7 = /x2 + y2 + z2. Work-
ing consistently in the weak-field approximation, show that the identity
derived in part (c) reduces to

—Lf |V<1>|2dvz3f pdV,
TJx ¥

in which dV and all vectorial operations refer to the three-dimensional
flat space of ordinary vector calculus. The left-hand side represents
(minus) the total gravitational potential energy of the system. For a
monoatomic ideal gas in thermodynamic equilibrium, the right-hand
side represents twice the total kinetic energy of the system. This equa-
tion is therefore a formulation of the virial theorem of Newtonian grav-
itational physics. The identity of part (c) can then be interpreted as a
general-relativistic version of the virial theorem.
The ADM mass is usually defined by
1 2
M=_— (D Yab — ) “Vod

which is a very diffcrent expression from the one appearing in Section 4.3.1.
Here, S is the two-surface that encloses the spacelike hypersurface %, If 4,
is the metric on X in arbitrary coordinates y?, then y,, = hqp — hgb, where
hgb is the metric of flat space in the same coordinates. We also have y = y9,
and D, is the covariant derivative associated with the flat metric hg p» Which 1s
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used to raise and lower all indices. Finally, r* is the unit normal of the surface
S, and \/Edzg is the surface element on S.

The purpose of this problem is to prove that this definition is equivalent to
the one given in the text,

M=-L (k — ko)v/o d*8,
8 S— o0
where & (kp) is the extrinsic curvature of S embedded in ¥ (flat space). You
may proceed along the following lines:

Because both expressions are invariant under a coordinate transformation,
we may use, in a neighbourhood of S, the coordinates (€, 64), where £ is
proper distance off § in the direction orthogonal to S, and 64 are coordinates
on S which are Lie transported off § along curves orthogonal to S. In these
coordinates the metric on ¥ is given by

hap dy® dy® = d€2 + 545 (£) d92 ap B,

where g4 (€) (which also depends on 84) is such that oaB(0) = o4p, the
induced metric on S. Similarly,

hgy dy® dy® = d€2 + 59, (£) do* a6 ®.

Because the induced metrics must agree on S, we also have &g 5(0) = o4p.
This implies that y,, = QO on S.

Using this information, show that both expressions for M reduce to the same
form,

1

167 Jsoo

WOy e/ 026

This is sufficient to prove that the two expressions are indeed equivalent.

In this problem we study the transport of energy and angular momentum by
a scalar field ¢ in flat spacetime. The metric is ds? = —d¢? + g2 +r2dQ?
and the scalar field satisfies the wave equation g%8 V.ap = —47mp, where p isa

spectfied source. It can be shown that in the wave zone (where r is much larger
than a typical wavelength of the radiation), the field is given by

1 (o'} £
Vr6.0) == > am@) Yom(8.¢) + 0(r2),

£=0m=-¢

where ¥y, (8, ¢) are spherical harmonics; the amplitudes ay,, are constructed
from p, and they are functions of retarded time u = ¢ — r. The scalar field



4.5 Problems 161

comes with a stress-energy tensor

1
Top =Y a¥,p — 5(¢‘“¢,u)gag,

and we are interested 1n the transfer of energy and angular momentum across

a null hypersurface ¥ defined by v = constant, where v = ¢ + r is advanced

time.

(a) Show that d¥g = —r?k, dudQ, where ke = ~18,v and dQ =
sinfdfB de¢, is a surface element on .

(b) Prove that for any test field producing a stress-energy tensor 75, the
amount of energy crossing ¥ per unit retarded time is

dF

— 2 w,p
— = Tugk™t" dQ2
du ﬁr C{ﬁ ’

where t* = 3x“/9¢ and S is a two-sphere of constant « and v. Prove

also that the amount of angular momentum flowing across % is given
by

dJ 5
= Tk P dQ,
du ﬁr of (o)
where ¢% = 3x%*/d¢.
(c) Show that for scalar radiation, the preceding expressions reduce to

o0 £
Zo3 Y femtof?

and

4/ [o's) 14
a; = Z Z im dﬂm(u)azn(u)

in the limit v — oo. Here, an overdot indicates differentiation with
respect to # and an asterisk denotes complex conjugation.

(d) Suppose that the source producing the scalar radiation is in rigid rotation
around the z axis, in the sense that the ¢ and ¢ dependence of p resides
entirely in the combination ¢p — ¢, where €2 is a constant angular ve-
Tocity. Prove that in this situation the field satisfies

Yo &% =0,
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where £% = ¥ + Q¢“. Prove also that in the limit v — oo, the trans-
fers of energy and angular momentum are related by

AL _ 4

du du
This relation applies to any type of radiation emitted by a source in
rigid rotation. It is valid also in curved spacetimes, provided that the
spacetime is stationary, axially symmetric, and asymptotically flat.



5
Black holes

The final chapter of this book is devoted to one of the most successful applications
of general relativity, the mathematical theory of black holes. In the first part of the
chapter we explore three exact solutions to the Einstein field equations that de-
scribe black holes; these are the Schwarzschild (Section 3.1), Reissner—Nordstréom
(Section 5.2), and Kerr (Section 5.3) solutions, In Section 5.4 we move away from
the specifics of those solutions and consider properties of black holes that can be
formulated quite generally, without relying on the details of a particular metric. In
the final section of this chapter, Section 5.5, we present the four fundamental laws
of black-hole mechanics.

The most important feature of a black-hole spacetime is the event horizon, a nul!
hypersurface which acts as a causal boundary between two regions of the space-
time, the interior and exterior of the black hole. Many physical quantities associ-
ated with the black hole, such as its mass, angular momentum, and surface area,
are defined by integration over the event horizon. The integration techniques intro-
duced in Chapter 3 will be put to direct use here, as well as the notions of mass and
angular momentum encountered in Chapter 4. And since the event horizon is gen-
erated by a congruence of null geodesics, the methods developed in Chapter 2 will
also be part of our discussion. So here it all comes together in one final glorious
moment!

5.1 Schwarzschild black hole
5.1.1 Birkhoff’s theorem

The Schwarzschild metric,

2 oM\
d52=-(1 ___A{) dr? + (1 —-——) dr2+r2d§22, (5.1)
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is the unique solution to the Einstein field equations that describes the vacuum
spacetime oulside a spherically symmetric body of mass M. While this object
could have a time-dependent mass distribution, the external spacetime is necessar-
ily static and its metric is given by Eq. (5.1). This statement, known as Birkhoff’s
theorem, implies that a spherical mass distribution cannot emit gravitational waves.

The proof of the theorem goes as follows. The metric of a spherically symmetric
spacetime can always be cast in the form

ds* = —eX far + F1 42 4 12402, (5.2)

involving the two arbitrary functions v (z, r) and f(¢, r). (This statement is not
quite true: It could happen that ¢ and r fail to be good coordinates in some region
of the spacetime, and this would invalidate this form of the metric in that region,
We will encounter such caseg shortly, but they can be ignored for the time being.)
It is convenient to also introduce a mass function m(t, r) defined by

f=1-22 (5.3)

¥

For the metric of Eq. (5.2), the Einstein field equations are

am

am
o )

= 47rr?‘(-—T; o = -—47tr2(——T';),

v B (5.4)

o =dnrfT (-T! + T}).

ar
The first two equations motivate the name ‘mass’ for the function m(r, r),as =T!
represents the density of mass-encrgy and —T77 its outward flux; they imply that
in vacuum, m(t, r) = M, a constant. The third gives ¥’ = 0, and (¢, r) can be
set equal to zero without loss of generality. The Schwarzschild solution is thereby
recovered.

5.1.2 Kruskal coordinates

The difficulties of the Schwarzschild metric at r = 2M are well known. While the
spacetime is perfectly well behaved there, the coordinates (z, r} become singular
at r = 2M — they are no longer in a one-to-one correspondence with spacetime
events. This problem can be circumvented by introducing another coordinate SyS-
tem. The following construction originates from the independent work of Krugkal
(1960) and Szekeres (1960).

Consider a swarm of massless particles moving radially in the Schwarzschild
spacetime — t and r vary, but not 8 and ¢. It is easy to check that ingoing parti-
cles move along curves v = constant, while outgoing particles move along curves
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U v

ingoing ray
outéoing ray
Figure 5.1 Spacetime diagram based on the (i, v) coordinates.

u = constant, where

u=t=¢-—r¥ v=1=t-+r*,

dr r (3:5)
r*=f e = + 2M In|— — 1|.

1—-2M/r 2M

In a spacetime diagram using v (advanced time) and u (retarded time) as oblique
coordinates (both oriented at 45 degrees), the massless particles propagate at
45 degrees, just as in flat spacetime (Fig. 5.1). The null coordinates (u, v) are
therefore well suited to the description of (radial) null geodesics. In these coordi-
nates the Schwarzschild metric takes the form

ds? = —(1 — 2M/r) du dv + r2 d2% (5.6)

Here, r appears no longer as a coordinate, but as the function of u and v defined
implicitly by r*(r) = %(v — u). In these coordinates the surface r = 2M appears
atv — u = —oo0, and it is still the locus of a coordinate singularity.

To see how this coordinate singularity might be removed, we focus our at-
tention on a small neighbourhood of the surface r = 2M, in which the rela-
tion r*(r) can be approximated by r* >~ 2M In{r/2M — 1]. This implies that
P)2M >~ 1 e /2M — 1 4 eW—i)/4M and £~ /M Here and below, the
upper sign refers to the part of the neighbourhood corresponding to r > 2M, while
the lower sign refers to r < 2M. The metric (5.6) becomes

ds? ~ (e /M dy) (™M dv) + r* Q.
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This expression motivates the introduction of a new set of null coordinates, U and
V, defined by

U = qe /M V = e?/4M (5.7)

In terms of these the metric will be well behaved near » = 2M. Going back to the
exact expression (5.5) for r*, we have that ¢” /2M = ¢W~®/AM — Ty or

el /2M (5;—4 — 1) =-UV, (5.8)

which implicitly gives r as a function of {/V. You may check that the
Schwarzschild metric is now given by

32M°3
r

ds? = — e~ /*M qUdv 4 r? d2?. (5.9)
This 1s manifestly regular at » = 2M. The coordinates U and V are called null
Kruskal coordinates. In a Kruskal diagram (a map of the U-V plane; see Fig. 5.2),
outgoing light rays move along curves U = constant, while ingoing light rays
move along curves V = constant.

In the Kruskal coordinates, a surface of constant r is described by an equa-
tion of the form UV = constant, which corresponds to a two-branch hyperbola
in the U-V plane. For example, r = 2M becomes UV = 0, while r = 0 becomes
UV = 1. There are two copies of each surface r = constant in a Kruskal diagram.
For example, r = 2M can be either U/ =0 or V = 0. The Kruskal coordinates
therefore reveal the existence of a much larger manifold than the portion covered
by the onginal Schwarzschild coordinates. In a Kruskal diagram, this portion is la-
beled I. The Kruskal coordinates do not only allow the continuation of the metric
through r = 2M into region I, they also allow continuation into regions III and

Figure 5.2 Kruskal diagram,
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IV. These additional regions, however, exist only in the maximal extension of the
Schwarzschild spacetime. If the black hole is the result of gravitational collapse,
then the Kruskal diagram must be cut off at a timelike boundary representing the

surface of the collapsing body. Regions II and IV then effectively disappear be-
low the surface of the collapsing star.

5.1.3 Eddington—-Finkelstein coordinates

Because of the implicit nature of the relation between r and U V, the Kruskal coor-
dinates can be awkward to use in some computations. In fact, it is rarely necessary
to employ coordinates that cover all four regions of the Kruskal diagram, although
it is often desirable to have coordinates that are well behaved at » = 2M. In such
situations, choosing v and » as coordinates, or # and r, does the trick. These coordi-
nate systems are called ingoing and outgoing Eddington—Finkelstein coordinates,
respectively.

It is easy to check that in the ingoing coordinates, the Schwarzschild metric
takes the form

ds? = —(1 —2M/r)dv? + 2 dvdr + r2dQ2, (5.10)
while in the outgoing coordinates,
ds? = —(1 = 2M/r) du?® — 2dudr + r2dQ2% (5.11)

It may also be verified that the (v, ») coordinates cover regions I and II of the
Kruskal diagram, while u and » cover regions IV and L

The Eddington-Finkelstein coordinates can also be used to construct space-
time diagrams (Fig. 5.3), but these do not have the property that both ingoing
and outgoing null geodesics propagate at 45 degrees. For example, it follows
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Figure 5.3 Spacetime diagram based on the (v, r) coordinates.
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from Eq. (5.10} that ingoing light rays move with dv = 0, that is, along coordi-
nate lines that can be oriented at 45 degrees, but the outgoing rays move with
dv/dr = 2/(1 — 2M /r), that is, with a varying slope.

5.1.4 Painlevé—Gulistrand coordinates

Another useful set of coordinates for the Schwarzschild spacetime are the
Painlevé-Gullstrand coordinates first considered in Section 3.13, Problem 1. Here,
as with the Eddington-Finkelstein coordinates, the spatial coordinates (r, 0, ¢) are
the same as in the original form of the metric, Eq. (5.1), but the time coordinate
is different: T is proper time as measured by a free-falling observer starting from
rest at infinity and moving radially inward.

The four-velocity of such an observer is given by «® 8, = f~'18, — /T — f 4,
where f =1 —2M/r. From this we deduce that Uy = —0u 1, where the time
function T is obtained by integrating d7 = dr + f~'\/T < F dr == dr, where t
is proper time. (Integration is elementary, and the result appears in Section 3.13,
Problem 1.) After inserting this expression for dr into Eq. (5.1), we obtain the
Pamlevé—Gullstrand form of the Schwarzschild metric:

ds? = —dT? 4 (dr + y/2M /7 dT)? + r2dS. (5.12)

The coordinates (T, r, 8, ¢) give rise to a metric that is regularat r = 2M, in corre-
spondence with the fact that our free-falling observer does not consider this surface
to be in any way special. Because this observer originates in region I of the space-
time (at r = 00) and ends up in region II (at r = 0), the new coordinates cover
only these two regions of the Kruskal diagram. By reversing the motion — letting
dr become —dr in Eq. (5.12) - an alternative coordinate system is produced that
covers regions VI and I instead. '

From Eq. (5.12) we infer a rather striking property of the Painlevé-Gullstrand
coordinates: The hypersurfaces T = constant are ail intrinsically flat. This can be
seen directly from the fact that the induced metric on any such hypersurface is
given by ds? = dr? 4 r2 dS2.

5.1.5 Penrose-Carter diagram

The double-null Kruskal coordinates make the causal structure of the
Schwarzschild spacetime very clear, and this is their main advantage. Another use-
ful set of double-null coordinates is obtained by applying the transformation

U = arctan U, V = arctan V. (5.13)
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Figure 5.4 Compactified coordinates for the Schwarzschild spacetime.

This rescaling of the null coordinates does not affect the appearance of radial light
rays, which still propagate at 45 degrees in a spacetine diagram based on the
new coordinates (Fig. 5.4). However, while the range of the initial coordinates
was infinite (for example, —00 < U < 00), it is finite for the new coordinates (for
example, —1/2 < U < m/2). The entire spacetime is therefore mapped onto a
finite domain of the U-V plane. This compactification of the manifold introduces
bad coordinate singularities at the boundaries of the new coordinate system, but
these are of no concern when the purpose is simply to construct a compact map of
the entire spacetime.

In the new coordinates the surfaces r = 2M are located at J = 0 and V =
0, and the singularities at r = 0, or UV = 1, are now at U4V = +r /2. The
Spacetime is also bounded by the surfaces U = =+m/2 and V = £ /2. The four
points (U, V) = (4n/2, +/2) are singularitics of the coordinate transformation:
In the actual spacetime the surfaces U = 0, U = 00, and UV = 1 never meet.

It is usefu] to assign names to the various boundaries of the compactified space-
time (Fig. 5.5). The surfaces U=n /2 and V=mx /2 are called furure null infinity
and are labelled .# * (pronounced ‘scri plus’). The diagram makes it clear that & *
contains the future endpoints of all outgoing null geodesw% (those along which r
increases). Similarly, the surfaces U = —7/2 and V = —n/2 are called past null
infinity and are labelled .# ~. These contain the past endpoints of all ingoing null
geodesics (those along which r decreases). The pomts at which % * and & ~
meet are called spacelike infinity and are labelled i®. These contain the endpoints
Of all spacelike geodesics. The points (U, V) = (0, 7/2) and (U, V) = (/2, 0)
;are called future timelike infinity and are labelled it. These contain the future end-
;Polnts of all timelike geodesws that do not terminate at r = 0. Finally, the points
WU, vy =, —n/2) and (U, V) = (—n /2, 0) are called past timelike infinity and
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Table 5.1 Boundaries of the compactified Schwarzschild

spacetime.
Label Name Definition
I Future null infinity v = 00, u finite
ST Past null infinity # = 00, v finite
i0 Spatial infinity r = 00, t finite
it Future timelike infinity t = 00, r finite
i~ Past timelike infinity t = —o0, r finite

i N

r=20

Figure 5.5 Penrose-Carter diagram of the Schwarzschild spacetime.

are labelled /™. These contain the past endpoints of all timelike geodesics that do
not originate at + = 0. Table 5.1 provides a summary of these definitions.
Compactified maps such as the one displayed in Fig. 5.5 are called Penrose-
Carter diagrams. They display, at a glance, the complete causal structure of the
spacctime under consideration. They make a very useful tool in general relativity.

5.1.6 Event horizon

On a Kruskal diagram (Fig. 5.2), all radial light rays move along curves U =
constant or V = constant. The light cones are therefore oriented at 45 degrees,
and timelike world lines, which lie within the light cones, move with a slope larger
than unity. The one-way character of the surface r = 2M separating regijons I and
I1 of the Schwarzschild spacetime is then clear: An observer crossing this sur-
face can never retrace her steps, and cannot elude an encounter with the curvature
singularity at r = 0. It is also clear that after crossing + = 2M, the observer can
no longer send signals to the outside world, although she may continue to receive
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them. The surface r = 2M therefore prevents any external observer from detecting
what goes on inside. In this context it is called the black-hole’s event horizon. The
region within the event horizon (region II) is called the black-hole region of the
Schwarzschild spacetime.

The surface r = 2M that separates regions I and II must be distinguished from
the surface r = 2M that separates regions IV and I. It is clear that the latter is
an event horizon to all observers living inside region IV (who cannot perceive
what goes on in region I). It is also a one-way surface, because observers from
the outside cannot cross it. To distinguish between the two surfaces r = 2M, it is
usual to refer to the first as a future horizon and to the second as a past horizon.
The region within the past horizon (region IV) is called the white-hole region of
the Schwarzschild spacetime.

5.1.7 Apparent horizon

Another important property of the surface r = 2M has to do with the behaviour
of outgoing light rays in a neighbourhood of this surface. Here, the term outgoing
will refer specifically to those rays which move on curves U = constant. This is
potentially confusing because the radial coordinate r does not necessarily increase
along those rays; in fact, r increases only if U < 0 (outside the black hole) and
it decreases if U > O (inside the black hole). While the term ‘outgoing’ should
perhaps be reserved to designate rays along which r always increases, this termi-
nology is nevertheless widely used. Similarly, we will use the term ingoing to des-
ignate light rays which move on curves V = constant. If V > 0, then r decreases
along the ingoing rays; if V < 0, r increases.

We will show that the expansion of a congruence of outgoing light rays (as
defined above) changes sign at r = 2M . (This should be obvious just from the fact
that r increases along the geodesics that are outside r = 2M, but decreases along
geodesics that are inside.) Outgoing light rays have

ky = —8,U (8.14)

as their (affinely parameterized) tangent vector, and their expansion is calcu-
lated as g = k%, = 1g1712(1gl"/?k?) 4. In Kruskal coordinates kV lguv]~!is
the only nonvamshmg component of k2, and |g|'/2 = |gyv|r?sin?8. This gives
0= 2r v /rlguv|, and using Eq. (5.8) and (5.9) we obtain

U

g = 1Y — _ _ 5.15
K 2Mr &-13)

As was previously claimed, the expansion is positive for U < 0 (in the past
°f "= 2M) and negative for U > 0 (in the future of r = 2M). The expansion
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trapped surface o

apparent horizon

Figure 5.6 Trapped surfaces and apparent horizon of a spacelike hypersurface.

therefore changes sign at ¥ = 2M, and in this context, this surface is called an ap-
parent horizon. (A similar calculation would reveal that for ingoing light rays, the
expansion is negative everywhere in regions I and I1.)

To give a proper definition to the term ‘apparent horizon,” we must first intro-
duce the notion of a trapped surface (Fig. 5.6). Let ¥ be a spacelike hypersurface.
A trapped surface on X is a closed, two-dimensional surface $ such that for both
congruences (ingoing and outgoing) of future-directed null geodesics orthogonal
to §, the expansion 6 is negative everywhere on S. (It should be clear that each two-
sphere U, V = constant in region II of the Kruskal diagram is a trapped surface.)
Let .7 be the portion of ¥ that contains trapped surfaces; this is known as the
trapped region of . The boundary of the trapped region, 8.7, is what is defined to
be the apparent horizon of the spacelike hypersurface . (In Schwarzschild space-
time this would be any two-sphere at r = 2M.) Notice that the apparent horizon is
a matginally trapped surface: For one congruence of null geodesics orthogonal to
37,6 = 0. Notice also that the apparent horizon designates a specific two-surface
S on a given hypersurface X. The apparent horizon can generally be extended to-
ward the future (and past) of %, because hypersurfaces to the future (and past) of
2 also contain apparent horizons. The union of all these apparent horizons forms
a three-dimensional surface &7 called the trapping horizon of the spacetime. (In
Schwarzschild spacetime this would be the entire hypersurface r = 2M ) In the
following we will not distinguish between the two-dimensional apparent horizon
and the three-dimensional trapping horizon; we will refer to both as the apparent
horizon. (This sloppiness of language is not uncommon.)

5.1.8 Distinction between event and apparent horizons: Vaidya spacetime

The event and apparent horizons of the Schwarzschild spacetime coincide, and 1t
may not be clear why the two concepts need to be distinguished. This coincidence,
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however, 1s a consequence of the fact that the spacetime is stationary; for more gen-
cral black-hole spacetimes the event and apparent horizons are distinct hypersur-
faces. To illustrate this we introduce a simple, non-stationary black-hole spacetime.

We express the Schwarzschild metric in terms of ingoing Eddin gton—Finkelstein
coordinates,

ds? = —fdv? +2dv dr +r2dQ2, (5.16)
and we allow the mass function to depend on advanced time v:
2m{v
f=1-20 (5.17)
r

This gives the ingoing Vaidya metric, a solution to the Einstein field equations with
stress-energy tensor

dm /dv )
where I, = —38,v is tangent to ingoing null geodesics. This stress-energy ten-

sor describes null dust, a pressureless fluid with energy density (dm Jdv)/(4rr?)
and four-velocity [%. (A similar, outgeing Vaidya solution was considered in Sec-
tion 4.3.5. A notable difference between these solutions is that here, the mass func-
tion must increase for Tyg to satisfy the standard energy conditions.)

Consider the following situation. A black hole, initial Iy of mass m 1, is irradiated
(with ingoing null dust) during a finite interval of advanced time (between vy and
vz) so that its mass increases to m2. Such a spacetime is described by the Vaidya
metric, with a mass function given by

oy v <
m(v) = { m2(v) vV <V <Uz,
mo V> Uy

where m,(v) increases smoothly from my to my. We would like to determine
the physical significance of the surfaces r = 2my, r = 2mi2(v), and r = 2my, and
find the precise location of the event horizon.

It should be clear that 7 = 2in¢ and r = 2m, describe the apparent horizon when
V= and v > vy, respectively. More generally, we will show that the apparent
.‘}hOI‘izon of the Vaidya spacetime is always located at r = 2m(v).

The null vector field ky dx® = — f dv + 2dr is tangent to a congruence of
é?utgoing null geodesics. It does not, however, satisfy the geodesic equation in
}_fﬁﬂe-parameter form: As a brief calculation reveals, k. 5kﬁ = k ko where k =
2"1 (v)/r2. To calculate the expansion of the outgoing null geodesics, we need to
ijii?ltroduce an affine parameter A* and a rescaled tangent vector k¥. (The calcula-
thn Can also be handled via the results of Section 2.6, Problem 8.) As was shown




174 Black holes

in Section 1.3, the desired relation between these vectors is kS = e k® where
dI'/dA = «(A) with A denoting the original parameter. We have

=e T (kofa — F,ako‘)

_ dr
= F(koga - a—x)
= e—[“(koga — I{).

Here, the factor k% | — k is the congruence’s expansion when measured in terms

of the initial parameter A — it is equal to (SA)td(sA) /dA, where 8 A is the con-
gruence’s cross-sectional area. The factor T converts it to (§A)~1d(3A)/dr*,
and this operation does not affect the sign of 6. A simple computation gives
k%, = 2(r ~ m)/r? and we arrive at

el'e = ;.2—2 [r — 2m(v)].

So 6 = 0 on the surface r = 2m(v), and we conclude that the apparent horizon
begins at r = 2mq for v < vy, follows r = 2m12(v) in the interval v; < v < vy,
and remains at r = 2m; for v > vo.

We may now show that while the apparent horizon is a null hypersurface before
v = vy and after v = v, it is spacelike in the interval v; < v < vy. This follows at
once from the fact that if ® = r — 2m(v) = 0 describes the apparent horizon, then

dm
B g = -4
g o4 yﬂ dU

1s negative (so that the normal ® o is timelike) if dm/dv > 0 (so that the energy
conditions are satisfied). We therefore see that the apparent horizon is null when
the spacetime is stationary, but that it is spacelike otherwise.

Where is the event horizon? Clearly it must coincide with the surface r = iy)
in the future of v = v,. But what is its extension to the past of v = v,? Because the
event horizon is defined as a causal boundary in spacetime, it must be a null hyper-
surface generated by null geodesics (more will be said on this in Section 5.4). The
event horizon can therefore not coincide with the apparent horizon in (he past of
v = vy. Instead, its location is determined by finding the outgoing null geodesics of
the Vaidya spacetime that conncct smoothly with the generators of the surface r =
2m3. (Sce Fig. 5.7; a particular example is worked out in Section 5.7, Problem 2.)

It is clear that the generators of the event horizon have to be expanding in the
past of v = vy if they are to be stationary (in the sense that § = 0) in the futare.
Indeed, supposing that the null energy condition is satisfied (which will be true
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Figure 5.7 Black hole irradiated with ingoing null dust.

if dm/dv > 0), the focusing theorem (Section 2.4) implies that the congruence
formed by the null generators of the event horizon will be focused by the infalling
null dust; a zero expansion in the future of v = v2 guarantees a positive expansion
in the past. The event horizon is therefore generated by those null geodesics that
undergo just the right amount of focusing, so that after encountering the last of the
infalling matter, their expansion goes to zero.

The event horizon coincides with the apparent horizon only in the future of
v = vy. In the past, because the apparent horizon has a spacelike segment while
the event horizon is everywhere null, the apparent horizon lies within the event
horizon, that is, inside the black hole (Fig. 5.7). As we shall see in Section 5.4, this
observation is quite general.

It is a remarkable property of the event horizon that the entire future history
of the spacetime must be known before its position can be determined: The black
hole’s final state must be known before the horizon’s null generators can be identi-
fied. This releological property is not shared by the apparent horizon, whose loca-
tion at any given time (as represented by a spacelike hypersurface) depends only
on the properties of the spacetime at that time.

5.1.9 Killing horizon

The vector 1% = ax%/at is a Killing vector of the Schwarzschild spacetime. While
thls vector is timelike outside the black hole, it is 7uzdl on the event horizon, and it
I8 spacelike inside:

2M
8aﬁtatﬁ =1- “r—
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The surface r = 2M can therefore be called a Killing horizon, a hypersurface on
which the norm of a Killing vector goes to zero. In static black-hole spacetimes,
the event, apparent, and Killing horizons all coincide.,

5.1.10 Bifurcation two-sphere

The point (U, V) = (0, 0) in a Kruskal diagram, at which the past and future
horizons intersect, represents the bifurcation two-sphere of the Schwarzschild
spacetime. This two-surface is characterized by the fact that the Killing vector
1% = 3x“/9r vanishes there. To recognize this we need to work out the compo-
nents of this vector in Kruskal coordinates. From Egs. (5.5) and (5.7) we get the
relation e'/?M — ~V /U, and after using Eq. (5.8) we obtain

U2 — or-npam | T 2_Grtn2m( T ()
© ) Ve oM

Taking partial derivatives with respect to ¢, we arrive at

tY = —-—IL, Voo L

4M 4M

It follows immediately that t* = 0 at the bifurcation two-sphere. It should be

noted that the bifurcation two-sphere exists only in the maximally extended

Schwarzschild spacetime. If the black hole is the result of gravitational collapse,
then the bifurcation two-sphere is not part of the actual spacetime.

According to our previous calculation, ¢V is the only nonvanishing component
of the Killing vector on the future horizon. This implies that t, x —8,U at U = 0,
and we have the important result that t* is tangent to the null generators of the
event horizon. This was to be expected from the fact that the event horizon of the
Schwarzschild spacetime is also a Killing horizon.

(5.19)

5.2 Reissner—-Nordstrom black hole
5.2.1 Derivation of the Reissner—Nordstrim solution

The Reissner-Nordstrém (RN) metric describes a static, spherically symmetric
black hole of mass M possessing an electric charge Q. We begin our discussion
with a derivation of this solution to the Einstein-Maxwell equations.

We assume that the electromagnetic-field tensor #*# has no components along
the 6 and ¢ directions; this ensures that the field is purely electric when measured
by stationary observers. Under this assumption the on%' nonvanishing component
is F'". Maxwell’s equations in vacuum are 0 = = |g|"12(1g| V2 FP) p-



5.2 Reissner—Nordstrém black hole L77
Using the metric of Eq. (5.2), this implies (e¥r2F!"y = 0, or

Fr—ev
¥

where Q is a constant of integration, to be interpreted as the black-hole charge.
The stress-energy tensor for the electromagnetic field is

!
Th = (FWFM — 25 F“”FMU),

and a few steps of algebra yield

0%
TS = diag(—1, —1, 1, 1). 5.20
B 87rr4 g( ) ( )
The Einstein field equations (5.4) imply m’ = Q?/2r2, or m(r) = M — Q2/2r.
The fact that 7% = 7. implies ¥/’ = 0, so that ¥ can be set to zero without loss of
generality. The RN solution is therefore

2M 2\7!
ds? = —(1 -4 Q—) dr? + (1 -4 Q—) dr? 4+ r2d2?,  (5.21)
r
with an electromagnetic-field tensor whose only nonvanishing component is
F'' = % (5.22)
r

Here, M is total (ADM) mass of the spacetime and Q is the black hole’s electric
charge.

To see that Q is indeed the charge, consider a nonsingular charge distribution
on a spacelike hypersurface %, described by a current density j¢ An appmpnate
definition for total charge is Q = [y, j*d%,, or Q = (47r)~! [ F© ﬂ « after
using Maxwell’s equations. Using Stokes’ theorem (Section 3.3.3), we rewnte this
as an integral over a closed two-surface S bounding the charge distribution. This
yields Gauss’ law,

Q= : F“ﬁ dS.s- (5.23)
87

The advantage of this expression for the total charge is that it is applicable even
When the charge distribution is singular, which is the case In the present appli-
Catlon Also, this definition of total charge is in the same spirit as the previously
encountered definitions for total mass and angular momentum (Section 4.3). Sub-
Stltutmg Eq. (5.22) and evaluating for a two-sphere of constant ¢ and r confirms
that the @ appearing in Eq. (5.22) is indeed the black hole’s electric charge.
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5.2.2 Kruskal coordinates

The function f(r) = 1 —2M/r + Q?/r? has zeroes at r = r4, where
re =M+ M2 - Q2. (5.24)

The roots are both real, and the RN spacetime truly contains a black hole, when
[Q] < M. The special case of a black hole with |Q| = M is referred to as an ex-
treme RN black hole. If |Q| > M, then the RN solution describes a naked singu-
larity atr = 0.

The coordinates (¢, 7) are singular at the outer horizon (r = r4), and new co-
ordinates must be introduced to extend the metric across this surface. This can be
done with Kruskal coordinates. As we shall see, however, these coordinates fail
to be regular at the inner horizon (r = r_), and another coordinate transformation
will be required to extend the metric beyond this surface. Thus, Kruskal coordi-
nates are specific to a given horizon, and a single coordinate patch is not sufficient
to cover the entire RN manifold (Fig. 5.8). We will see that the outer horizon in an
event horizon for the RN spacetime, and the inner horizon is an apparent horizon.

Let us first take care of the extension across the outer horizon. We express the
RN metric in the form

ds? = —fdi® + £ dr? + r2dQ2,

where f = 1 —2M/r + Q?/r?% Near r = r, this function can be approximated
by

Fr) =26 (r —ry),

where ;. = %f '(r). It follows that near r = rq,
dr 1
F*E —-f—"_‘:ilc—_‘-ln!l{_'_(r—r_'_)'.

U, v, U_ v_ Uy A

Figure 5.8 Kruskal patches {or the Retssner~Nordstrdm spacetime.,
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Introducing the nuil coordinates u = ¢ — r* and v = r +- r*, the surface r = r
appears at v — u = —oo and we define the Kruskal coordinates U, and V., by

Uy = e, V, = e*+?, (5.25)

Here, the upper sign refers to r > ry and the lower sign refers tor < ry. Itis easy
to check that f ~ —2U, V, near r = r_, so that the metric becomes

ds? ~ —_2-5 dULdVy + r 2 92,
Kt

This shows that when it is expressed in the coordinates (U4, V), the metric
is well behaved at the outer horizon. On the other hand, an exact integration for
r*(r) would reveal that r* — 400 at the inner horizon, which is then located at
v—u =00, or UpV; = o0o. The Kruskal coordinates are singular at the inner
horizon.

The coordinates (U, V) should be used only in the interval r| < r < oo,
where ry > r_ is some cutoff radius. Inside r = r; another coordinate system
must be introduced. One such system is (¢, r), in which the metric takes the stan-
dard form of Eq. (5.21). It is important to understand that this new coordinate
patch, which covers the portion of the RN spacetime corresponding to the inter-
valr_ < r < ry, is distinct from the original patch that covers the external region
¥ > ry. And indeed, because f is now negative, the new r must be interpreted as
a spacelike coordinate (because g,; > 0) while r must be interpreted as a timelike
coordinate (because g,» < 0).

There still remains the issue of extending the spacetime beyond r = r_, where
the new (z, r) coordinates fail. We want to construct a new set of Kruskal coordi-
nates, U/_ and V_, adapted to the inner horizon. Retracing the same steps as before,
we have that near r = r_ the function # can be approximated by

F) = =2u_(r—r),
where k_ = %lf’(r_)l. It follows that

r*

12

1
_—ZI(‘—H lnlic_(r - r_)j.

Withu =¢ — r* and v = ¢ + r*, the surface r = r_ appears at v — ¥ = 400 and
we define the new Kruskal coordinates by

U_ = e, Vo = —e Y. (5.26)

Here, the upper sign refers to r > r.. and the lower sign refers to r < r_. Then
Jf > —2U_V_ and the metric becomes

y)
ds? ~ —— dU_dV_ + r_2dQ*.
K_.
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This is manifestly regular across r = r—. The new Kruskal coordinates, however,
are singular at r = ry.

What happens now on the other side of the inner horizon? The most notice-
able feature is that the singularity at r = O appears as a timelike surface — this is
markedly different from what happens inside a Schwarzschild black hole, where
the singularity is spacelike. Because f > 0 when r < r_, r re-acquires its inter-
pretation as a spacelike coordinate; any surface r = constant < r_ is therefore a
timelike hypersurface, and this includes the singularity. Because it is timelike, the
singularity can be avoided by observers moving within the black hole. This is a
striking new phenomenon, and we should examine it very carefully.

Consider the motion of a typical observer inside a RN black hole (Fig. 5.8).
Before crossing the inner horizon (but after going across the outer horizon), r is a
timelike coordinate and the motion necessarily proceeds with r decreasing. After
crossing r = r—, however, r becomes spacelike and both types of motion (r de-
creasing or increasing) become possible. Our observer may therefore decide to re-
verse course, and if she does, she will avoid r = 0 altogether. Her motion inside the
inner horizon will then proceed with r increasing and she will cross, once more, the
surface r = r—. This, however, is another copy of the inner horizon, distinct from
the one encountered previously. (Recall that there are two copies of each surface
= constant in a Kruskal diagram.) After entering this new r > 7 region, our ob-
server notices that r has once again become timelike, and she finds that reversing
course is no longer possible: Her motion must proceed with r increasing and this
brings her in the vicinity of another surface r = r.. Because there is no reason for
spacetime to just stop there, yet another Kruskal patch (U, V4) must be intro-
duced to extend the RN metric beyond this horizon. The new Kruskal coordinates
take over where the old patch (U_, V-) leaves off, at the spacelike hypersurface
¥y =ri|. -

The ultimate conclusion to these considerations is that our observer eventually
emerges out of the black hole, through another copy of the outer horizon, into a
new asymptotically-flat universe. Her trip may not end there: Qur observer could
now decide to enter the RN black hole that resides in this new universe, and this en-
tire cycle would repeat! It therefore appears that the RN metric describes more than
just a single black hole. Indeed, it describes an infinite lattice of asymptotically-flat
universes connected by black-hole tunnels.

Such a fantastic spacetime structure is best represented with a Penrose—Carter
diagram (Fig. 5.9). The diagram shows that the region bounded by the surfaces
r = ry and r = r— contains trapped surfaces: Both ingoing and outgoing light
rays originating from this region converge toward the singularity. The outer and
inner horizons are therefore apparent horizons, but only the outer horizon is an
event horizon.
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Figure 5.9 Penrose-Carter diagram of the Reissner-Nordstrdm spacetume.

5.2.3 Radial observers in Reissner~Nordstrom spacetime

The discovery of black-hole tunnels is so bizarre that it should be backed up by a
solid calculation. Here we consider the geodesic motion of a free-falling observer
in the RN spacetime. It is assumed that the motion proceeds entirely in the radial
direction and that initially, it is directed inward.

We will first work with the (v, ) coordinates, in which the metric takes the form

ds? = — f dv? + 2dvdr + r2dQ2, (5.27)

where f =1—2M/r + Q?/r?. The observer’s four-velocity is u® 9y = vy +
F 8,. where an overdot denotes differentiation with respect to proper time 7. The

quantity E = —uyt® = —u,, the observer’s energy per unit mass, is a constant of
the motion. In terms of © and # this is given by £ = f¥ — 7. On the other hand,
the normalization condition #®u, = —1 gives f02 — 20r = 1, and these equations
imply
~ =) 1/2
: ~ 1/2 \ E—(E*-f)
tn=—(E2= )% dn= ( - , (5.28)

where the sign in front of the square root was chosen appropriately for an ingoing
Observer.
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The equation for 7 can also be written in the form
P+ f = EY (5.29)

which comes with a nice interpretation as an energy equation (Fig. 5.10). Its mes-
sage is clear: After crossing the outer and inner horizons the observer reaches a
turning point (7 = 0) at a radius ryy, < r such that f(rmin) = E2. The motion,
which initially was inward, turns outward and the observer eventually emerges out
of the black hole, into a new external universe. During the outward portion of the
motion, the observer’s four-velocity is given by

172

Fout = +(Ez - f)llz» tout = ' (5.30)

with the opposite sign in front of the square root.

Let us examine the behaviour of ¥ as the observer traverses a horizon. When the
motion is inward we have that ¥ =~ (2E)~! in the Yimit f — 0. This means that
v stays finite during the first crossings of the outer and inner horizons. When the
motion is outward,  ~ 2E/f in the limit f — 0, and this means that the coordi-
nates (v, r) become singular during the second érossing of the inner horizon. The
observer’s motion cannot be followed beyond this point, unless new coordinates
are introduced.

Let us therefore switch to the coordinates (i, r), in which the RN metric takes
the form

ds? = — F du® — 2du dr + r2 422, (5.31)

r=0 r=r_ r=ry

Figure 5.10 Effective potential for radial motion in Reissner—Nordstrom
spacetime.
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Figure 5.11 Eddington-Finkelstein patches for the Reissner-Nordstrom
spacetime.

In these coordinates, and during the outward portion of the motion (after the
bounce at ¥ = rmyy,), the four-velocity is given by

E—(E2—f)'?

fou = +(E2 = )7, it = 1 (5.32)
We have that it ~ (2E)~! when J = 0, which shows that u stays finite during the
second crossings of the inner and outer horizons.

We see that a large portion of the RN spacetime is covered by the two coordinate
patches employed here (Fig. 5.11). This includes two asymptotically-flat regions
connected by a black-hole tunne! that contains two copies of the outer horizon, and
two copies of the inner horizon. The complete spacetime is obtained by tessella-
tion, using the patches (v, r) and (u, r) as tiles; this gives rise to the diagram of
Fig. 5.9. Because the cowmplete spacetime contains an infinite number of black-hole
Wnnels, an infinite number of coordinate patches is required for its description.

The presence of black-hole tunnels in the RN spacetime is now well established.
These tunnels, of course, have a lot to do with the occurrence of a turning point in
the motion of our free-falling observer. This is a rather striking feature of the RN
Spacetime. While turning points are a familiar feature of Newtonian mechanics, in
this context they are always associated with the presence of an angular-momentum
term in the effective potential: The centrifugal force is repulsive and it prevents an
Observer from reaching the centre at r = 0, This, however, cannot explain what is
happening here, because the motion was restricted from the start to be radial — there
IS no angular momentum present to produce a repulsive force. The gravitational
field alone must be responsible for the repulsion, and we are forced to conclude



184 Black holes

that inside the inner horizon, the gravitational force becomes repulsive! It is this
repulsive gravity that ultimately is responsible for the black-hole tunnels.

Such a surprising conclusion can perhaps be understood better if we recall our
previous expression for the mass function:

m(r) = M — =~ (5.33)

This relation shows that m{r) becomes negative if r is sufficiently small, and
clearly, this negative mass will produce a repulsive gravitational force. How can
we explain this behaviour for the mass function? We recall that m(r) measures
the mass inside a sphere of radius r. In general this will be smaller than the total
mass M = m(0o), because a sphere of finite radius r excludes a certain amount -
equal to 02/(2r) — of electrostatic energy. If the radius is sufficiently small, then
QQ/(Zr) > M and m(r) < 0. You may check that this always occurs within the
inner horizon.

The conclusion that the RN spacetime contains black-hole tunnels 1s firm.
Should we then feel confident that a trip inside a charged black hole will lead
us to a new universe? This answer is no. The reason is that the existence of such
tunnels depends very sensitively on the assumed symmetries of the RN spacetime,
namely, staticity and spherical symmetry. These symmetries would not be exact in
a realistic black hole, and slight perturbations have a dramatic effect on the hole’s
internal structure. The tunnels are unstable, and they do not appear in realistic
situations. (More will be said on this in Section 5.7, Problem 3.)

5.2.4 Surface gravity

In Section 5.2.2, a quantity k4 = % f'(ry) was introduced during the construction
of Kruskal coordinates adapted to the outer horizon. We shall name this quantity
the surface gravity of the black hole, and henceforth denote it simply by «. As we
shall see in Section 5.5, the surface gravity provides an important characterization
of black holes, and it plays a key role in the laws of black-hole mechanics. For the
RN black hole the surface gravity is given explicitly by

ry—r—  JM?—Q?

= = 5.34
K 22 I (5.34)

where we have used Eq. (5.24). Notice that « = O for an extreme RN black hole
and that

K= — (5.35)

for a Schwarzschild black hole.
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The name ‘surface gravity’ deserves a justification. Consider, in a static and
spherically symmetric spacetime with metric

ds? = —fdi? + £ dr? +,2d02, (5.36)

a particle of unit mass held stationary at a radius r. (Here, f is not necessarily
required to have the RN form, but this will be the case of interest.) The four-
velocity of the stationary particle is u” = f —1/2¢2 and its acceleration is a% =
u“;ﬁuﬁ. The only nonvanishing component is a” = %f’ and the magnitude of the

acceleration vector is

a() = (gapa®a®)* = 2 17VF ) (5.37)

This is the force required to hold the particle at r if the force is applied locally,
at the particle’s position. This, not surprisingly, diverges in the limit r — ry. But
suppose instead that the particle is held in place by an observer at infinity, by
means of an infinitely long, massless string. What is aeo(r), the force applied by
this observer?

To answer this we consider the following thought experiment. Let the observer
at infinity raise the string by a small proper distance és, thereby doing an amount
8Weo = aceds of work. At the particle’s position the displacement is also ds, but
the work done is §W = a §s. (You may justify this statement by working in a local
Lorentz frame at r.) Suppose now that the work W is converted into radiation that
is then collected at infinity. The received energy is redshifted by a factor F12 50
that § Eeo = f!/2a §s. But energy conservation demands that the energy extracted
be equal to the energy put in, so that § Ee = 8 Weo. This implies

aeo(r) = fV2a(r)y = %f’(r)- (5.38)

This is the force applied by the observer at infinity. This quantity is well behaved
in the limit » — r4., and it is appropriate to call dec (r+) the surface gravity of the
black hole. Thus,

1
K= Qoolry) = 5 fl(ry). (5.39)

The surface gravity is therefore the force required of an observer at infinity to hold
a particle (of unit mass) stationary at the event horizon.

The surface gravity can also be defined in terms of the Killing vector t®. We
have seen in Section 5.1.9 that the event horizon of a static spacetime is also a
Killing horizon, so that t% is tangent to the horizon’s null generators. Because
1% is orthogonal to itself on the horizon, it is also normal to the horizon. But
$ = ¥, = 0 on the horizon, and since the normal vector is proportional to
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@ «, there must exist a scalar x such that

(—t“rﬂ)_af = 2K 1y (5.40)

on the horizon. A brief calculation confirms that this « is the surface gravity: Us-
ing the coordinates (v, r) we have that 1% 9, = dy and t, dx% = dr on the hori-
70N, w1th P = —gy = f we obtain & o = f'8,r, which is just Eq. (5.40) with
K=3 > f'(r4). This calculation reveals also that the horizon’s null generators are
parameterized by v.

Because t” is tangent to the horizon’s null generators, it must satisfy the
geodesic equation at r = ry. This comes as an immediate consequence of
Eq. (5.40) and Killing’s equation: On the horizon,

r"fﬁtﬁ = Kt?, (5.41)

and we see that v is not an affine parameter on the generators. An affine parameter
A can be obtained by integrating the equation dA/dv = e (Section 1.3). This
gives A = V /k, where V = e*? is one of the Kruskal coordinates adapted to the

event horizon — it was denoted V., in Section 5.2.2. It follows that on the horizon,
the null vector

kY = vl (5.42)

satisfies the geodesic equation in affine-parameter form.

It is possible to derive an explicit formula for x. Because the congruence
of null generators is necessarily hypersurface orthogonal, Frobenius’ theorem
(Section 2.4.3) guarantees that the relation

oz ply) = 0:
18 satisfied on the event horizon. Using Killing’s equation, this implies
fa; pty + byalp +1gyla = 0,
and contracting with t*# yields
(Pt pty = —tyat®yt? + 15,18 1°
= —K byt + ik tgytF
= —2;c2ty.

We have obtained

1 ..
K2 = ) ta’ﬁta;ﬁ, (5.43)
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in which it is understood that the right-hand side is evaluated at » = r... Equations
(5.40), (5.41), and (5.43) can all be regarded as fundamental definitions of the
surface gravity; they are of course all equivalent.

5.3 Kerr black hole
5.3.1 The Kerr metric

A solution to the Einstein field equations describing a rotating black hole was dis-
covered by Roy Kerr in 1963. (There is also a solution to the Einstein—-Maxwell
equations that describes a charged, rotating black hole. It is known as the Kerr—
Newman solution, and it is described in Section 5.7, Problem 8.) As we shall
see, the Kerr metric can be written in a number of different ways. In the standard
Boyer-Lindquist coordinates it is given by

2 i 2Mr 5 4Mar sin? 0
ds® = — — p2 dt —-“"—-';2——-—

X « 2 2
dtdqb—i——2 Sin 9d§b
p

o2
+ 5 ar? 4 p*ae?

”’2‘ ) (5.44)
A )
=L 24?4 2 sin? g — wdn)? + 2 ar? 4 p? a0,
% P A
where
pr=r?4a%cos®9, A=r?—2Mr+ 42, S
(5.45)
2M
Y= (r2+a2)2—c22A sin® 9, a)E—g"'b = ar‘
Lo Z

The Kerr metric is stationary and axially symmetric; it therefore admits the Killing
vectors 1% = 9x%/dt and ¢ = 3x%/3¢. It is also asymptotically flat. The Komar
formulae (Section 4.3) confirm that M is the spacetime’s ADM mass, and show
that J = aM is the angular momentum (so that a is the ratio of angular momentum
to mass).

The components of the inverse metric are

. gt — _ 2Mar A a*sin* 0
02A’ oA’ P2 A sin? 0
(5.46)
o = Al g% — j_
P2 02

The metric and its inverse have singularities at A = 0 and p? = 0. To distinguish
between coordinate and curvature singularities, we examine the squarcd Riemann
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tensor of the Kerr spacetime:

48M%(r? — a? cos? 0) (p* — 16a%r? cos? §)

é
Raﬁy Raﬁ},‘g = plz

(5.47)

This reveals that the singularity of the metric at A = 0 is just a coordinate sin-
gularity, but that the Kerr spacetime is truly singular at p2 = 0. The nature of the
curvature singularity will be clarified in Section 5.3.8.

Various properties of the Kerr spacetime will be examined in the following sub-
sections. To facilitate this discussion we will introduce three families of observers:
zero-angular-momentum observers (ZAMOs), static observers, and stationary ob-
servers.

5.3.2 Dragging of inertial frames: ZAMOs

ZAMOs are observers with zero angular momentum: if u® is the fout-velocity, then
L = ua¢™ = 0. This implies that gg,f + g¢¢q5 = (), where an overdot indicates
differentiation with respect to proper time 7. Using Eqs. (5.44) this translates to

Q= i(é = w, (5.48)
dz

and we see that ZAMOSs possess an angular velocity equal to w = —&rp/ 8¢pg. This
angular velocity increases as the observer approaches the black hole, and it goes
in the same direction as the hole’s own rotation — the ZAMOs rotate with the
black hole. This striking property of the Kerr black hole, which in fact is shared
by all rotating bodies, is called the dragging of inertial frames (see Section 3.10).
At large distances from the black hole, w = 2J/r3, and the dragging disappears
completely at infinity. :

5.3.3 Static limit: static observers

We now consider static observers in the Kerr spacetime. Such observers have a
four-velocity proportional to the Killing vector ¢%;

o tO’

where the factor y = (—gupt” 18)~1/2 ensures that the four-velocity is properly
normalized. Because these observers must be held in place by an external agent (a
rocket engine, for example), the motion is not geodesic.

Static observers cannot exist everywhere in the Kerr spacetime. This can be
seen from the fact that t is not everywhere timelike, but becomes null when

y~% = —g, = 0; when this occurs, Eq. (5.49) breaks down. The static limit is
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static limit

rotation axis

horizon

Figure 5.12  Static limit and event horizon of the Kerr spacetime.

therefore described by gy = O or, after using Egs. (5.44) and (5.45), r2 — 2Mr +
a?cos? 0 = 0. Solving for r reveals that the static limit is located at r = rg(6),
where

rqa@; =M + \/M2 — alcos? . (5.50)

Thus, observers cannot remain static when r < rq(6), even if an arbitrarily large
force is applied. Instead, the dragging of inertial frames compels them to rotate
with the black hole. As we shall see, the static limit does not coincide with the
hole’s event horizon. The finite region between the horizon and the static limit is
called the ergosphere of the Kerr spacetime (Fig. 5.12).

5.3.4 Event horizon: stationary observers

We now consider observers moving in the ¢ direction with an arbitrary, but uni-
form, angular velocity d¢/df = 2. Because such observers do not perceive any
time variation in the black hole’s gravitational field, they are called stationary ob-
servers. They move with a four-velocity

u® =y (i + Q¢%), (5.51)

where 1% + Q¢ is a Killing vector for the Kerr spacetime, and y a new normal-
ization factor given by

sz = —8op (ta + qua)(tﬁ + Schﬁ)
= =8 —~ 2828 — ng"w
— “gw(s)? - 2w82 + grt/gqbqb)’

where w = —gra /81t
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Stationary observers cannot exist everywhere in the Kerr spacetime: The vector
1% + Q¢* must be timelike, and this fails to be true when ¥~% is nonpositive. It is
easy to check that the condition y =2 > 0 gives rise to the following requirement
on the angular velocity:

Qo< Q < Q+, (5.52)

where Q24 = a):i:\/w2 — 8it/8pg- After some algebra, using LEgs. (5.44) and
(5.45), this reduces to

Al/2 52

Tsinf
A stationary observer with € = 0 is a static observer, and we know that static ob-
servers exist only outside the static limit. It must therefore be true that €_ changes
sign at r = rg(#). This is confirmed by a few lines of algebra, using Egs. (5.50)
and (5.53). As r decreases further from rsi(6), €2 increases while Q2 decreases,
Eventually we arrive at the situation Q_ = 24, which implies = w; at this point
the stationary observer is forced to move around the black hole with an angular
velocity equal to w. This occurs when A = 0, or 72 — 2 M7 4+ a? = 0. The largest
solution is r = r, where

Qi =w+ (5.53)

ry=M4+VM? a2, (5.54)

Notice that the roots of A = O are real if and only if @ < M, or / < M?: There
is an upper limit on the angular momentum of a black hole. Kerr black holes with
a = M are said to be extremal. For a > M the Kerr metric describes a naked siu-
gularity.

The vector 1% 4 Q¢* becomes null at = r4 and stationary observers cannot
exist inside this surface, which we identify with the black hole’s event horizon
(Fig. 5.12). The quantity

a

—_— 5.55
)’+2 +CIZ ( )

R =w(y)=
is then interpreted as the angular velocity of the black hole. Stationary observers
just outside the horizon have an angular velocity equal to Qg ~ they are in a state
of corotation with the black hole.

To confirm that r = r,_is truly the event horizon, we use the property that in a
stationary spacetime, the event horizon is also an apparent horizon — a surface of
zero expansion for a congruence of outgoing null geodesics orthogonal to the sur-
face. The event horizon must therefore be a null, stationary surface. Now, the nor-
mal to any stationary surface must be proportional to dyr, and such a surface will
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be null if g“ﬁ(aar)(agr) = g¢"" = 0. Using Eq. (5.46) gives
A=r?—2Mr+a*=0. (5.56)

The largest solution, r = r4, designates the event horizon. The other root,

ro =M —+M2—a42 (5.57)

describes the black hole’s inner apparent horizon, which is analogous to the inner
horizon of the Reissner—Nordstrom black hole.
We have found that the vector

§° =1+ Quo” (5.58)

is null at the event horizon. It is tangent to the horizon’s null generators, which
wrap around the horizon with an angular velocity £2;;. Because it is a linear com-
bination of two Killing vectors, £¢ is also a Killing vector, and the event horizon
of the Kerr spacetime 1s a Killing horizon. Notice an important difference between
stationary and static black holes: For a static black hole, t* becomes null at the
event horizon; for a stationary black hole, t* is null at the static limit and £% be-
comes null at the event horizon.

5.3.5 The Penrose process

The fact that 7% is spacelike in the ergosphere — the region 1y < r < rg(0) of the
Kerr spacetime — implies that the (conserved) energy E = —put® of a particle
with four-momentum p® can be of either sign. Particles with negative energy can
therefore exist in the ergosphere, but they would never be able to escape from this
region. (Note that E < 0 refers to the energy that would be measured at infinity if
the particle could be brought there. Any local measurement of the particle’s energy
inside the static limit would return a positive value.)

It is easy to elaborate a scenario in which negative-cnergy particles created in
the ergosphere are used to extract positive energy from a Kerr black hole. Imagine
that a particle of energy £, > 0 comes from infinity and enters the ergosphere.
There, it decays into two new particles, one with energy —E2 < 0, the other with
energy F3 = E) + E2 > E1. While the negative-energy particle remains inside
the static limit, the positive-energy particle escapes to infinity where its energy is
extracted. Because E3 is larger than the energy of the initial particle, the black hole
must have given off some of its own energy. This is the Penrose process, by which
some of the energy of a rotating black hole can be extracted.

The Penrose process is self-limiting: Only a fraction of the hole’s total energy
can be tapped. Suppose that in order to exploit the Penrose process, a rotating
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black hole is made to absorb a particle of energy E == — pot® < 0and angular mo-
mentum L = pe¢®. Because the Killing vector £% = 1¥ 4+ Qy¢% is timelike Just
outside the event horizon, the combination £ — QpL = — Pa&® must be positive;

otherwise the particle would not be able to penetrate the honizon. Thus L. < E/Qy
and L must be negative if £ < 0. The black hole will therefore lose angular mo-
mentum during the Penrose process. Eventually the hole’s angular momentum will
go fo zero, the ergosphere will disappear, and the Penrose process will stop. We
might say that only the hole’s rotational energy can be extracted by the Penrose
process.

Note that in a process by which a black hole absorbs a particle of energy F (of
either sign) and angular momentum L, its parameters change by amounts M = E
and 8/ = L. Since E — 2 L must be positive, we have

M —QuéJ > 0.

As we shall see, this inequality is a direct consequence of the first and second laws
of black-hole mechanics.

5.3.6 Principal null congruences

The Boyer-Lindquist coordinates, like the Schwarzschild coordinates, are singular
~ at the event horizon: While a trip down to the event horizon requires a finite proper
time, the interval of coordinate time ¢ is infinite. Moreover, because the angular
velocity d¢/dr tends to a finite limit at the horizon, ¢ also increases by an infinite
amount. We therefore need another coordinate system to extend the Kerr metric
beyond the event horizon. It is advantageous to tailor these new coordinates ta
the behaviour of null geodesics. The two congruences considered here (which are
known as the principal null congruences of the Kerr spacetime) are especially sim-
ple to deal with; we will use them to construct new coordinates for the Kerr metric.

It is a remarkable feature of the Kerr metric that the equations for geodesic mo-
tion can be expressed in a decoupled, first-order form. These equations involve
three constants of the motion: the energy parameter £, the angular-momentum pa-
rameter Z, and the ‘Carter constant’ 2. (This last constant appears because of the
existence of a Killing tensor. This is explained in Section 5.7, Problem 4, which
also provides a derivation of the geodesic equations.) For null geodesics the equa-
tions are

p'i=—a(aEsin®0 — L) + (r* + 2P/ A,
P = /R,

0’8 =+/6,

pzq‘ﬁ = —(czI:J — i/sinQQ) +aP/A,
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in which an overdot indicates differentiation with respect to an affine parameter A,
and

P=E(r’+d*)~al,
R=P'—A[(L-aE) +2)
® = 2 +cos?8(a*E? — L?/sin0).

We simplify these equations by making the following choices:

I = aEsin?h, Q:—(i——aﬁ)2=—(aﬁcoszf9)2.

It 1s easy to check that these imply ® = 0, so that our geodesics move with a
constant value of §. We also have P = E p? and R = (E p?)%, which give

i=E@F*+a’)/A, F=+E, =0, ¢=aL/A.
The constant £ can be absorbed into the affine parameter A. We obtain an ingoing

congruence by choosing the negative sign for 7, and we shall use [* to denote its
tangent vector field:

2, 2
re+a a
1% 8, = A 8 — Oy + X 0. (5.59)
Choosing instead the positive sign gives an outgoing congruence, with
2, 2
r-+a a
k¥ 8, = A dr + 0y + = dg (5.60)

as its tangent vector field.
To give the simplest description of the ingoing congruence, we introduce new
coordinates v and ¥ defined by

v="t-+r* ¥ =¢ +r, (5.61)
where
r*=/r2+azdr
A
M Mr.
:r+—li~1n1~w1‘——~r——lnj——1] (5.62)
M?2—a? |ri M?Z—q? |r-
and
b= | 2 = 4 1 b 5.63
' fA ' 2V M? — a? Ay :63)

Itis casy to check that in these coordinates, /" = —1 is the only nonvanishing com-
ponent of the tangent vector. This means that v and ¥ (as well as f) are constant
on each of the ingoing null geodesics, and that —r is the affine parameter.
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The simplest description of the ourgoing congruence is provided by the coordi-
nates (u, r, 8, x), where

u=t-—r* x =¢ —rb. (5.64)

In these coordinates kX = +1 is the only nonvanishing component of the tangent
vector. This shows that u and x (as well as 9) are constant along the outgoing null
geodesics, and that r is the affine parameter.

The Kerr metric can be expressed in either one of these new coordinate systems.
While the coordinates (v, 7, 8, ) are well behaved on the future horizon but sin-
gular on the past horizon, the coordinates (u, r, 8, x) are well behaved on the past
horizon but singular on the future horizon. For example, 2 straightforward compu-
tation reveals that after a transformation to the ingoing coordinates, the Kerr metric
becomes

2Mr
ds? = -<1 ———————) dv? + 2 dv dr — 2a sin? 0 dr dyr
02

4Mar sin® 9 )
— —————dvdy + = sin® 0 dy? + p? d62, (5.65)

| e P
These coordinates produce an extension of the Kerr metric across the future hori-
zon. Several coordinate patches, both ingoing and outgoing, are required to cover

the entire Kerr spacetime, whose causal structure is very similar to that of the
Reissner-Nordstrdm spacetime. We shall return to this topic in Section 5.3.9.

5.3.7 Kerr-Schild coordinates

Another useful set of coordinates for the Kerr metric is (+', x, y, z), the pseudo-
Lorentzian Kerr—Schild coordinates in terms of ‘which the metric takes a particu-
larly interesting form. These are constructed as follows.

We start with Eq. (5.65) and separate out the terms that are proportlonal to M.
After some algebra we obtain

ds? = —dv® + 2dvdr — 2asin®0 dr dy + (2 + a?) sin 0 dy? + p? dg?
2Mr

02

The terms that do not involve M have a simple interpretation: They give the metric
of flat spacetime in an unfamiliar coordinate system. The rest of the line element
can be written neatly in terms of [, Recalling that /" = —1 is the only nonvanish-
ing component of /%, we find that

(dv — asin® @ dl,.’f)

—ly dx* = dv — asin® 9 dyr
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and the line element becomes

2M
ds? = (ds?)ga + pzr (o dx). (5.66)
The Kerr metric can therefore be expressed as
2Mr
Baf = Nag + -———pz lalg, (5.67)

where 7qg is the metric of flat spacetime in the coordinates (v, r, 8, ).

Equation (5.67) gives us the Kerr metric in a rather attractive form. Any metric
that can be written as 8ap = Nup + Hlolg, where H is a scalar function and I,
a null vector field, is known as a Kerr—Schild metric. It is by adopting such an
expression that Kerr discovered his solution in 1963. (Some general aspects of the
Kerr-Schild decomposition are worked out in Section 5.7, Problem 5.)

The next order of business is to find the coordinate transformation that brings
Nup tO the standard Minkowski form. The answer is

x+iy=(+ie)sinfe, z=rcosd, ' =v-—r (5.68)
Going through the necessary algebra does indeed reveat that in these coordinates,
(As%)ar = —dr? + dx? + dy? + dz2. (5.69)

Itis easy to work out the components of /,, in this coordinate systemn. Because the
null geodesics move with constant values of v, 0, and ¥, we have that x + iy =
—sinfe¥, 7 = —cosh, and ' = 1, where we have used 7 = —1. Lowering the
indices is a trivial matter (see Section 5.7, Problem 5), and expressing the right-
hand sides in terms of the new coordinates gives

rx + ay ry —ax

<

—lo dx® = dt' + 5
a r r

The quantity » must now be expressed in terms of x, y, and z. Starting with x2 4+
¥ = (r2 4+ a?)sin? 0, it is easy to show that
rt— x? + y2 42— a®)r? — 4%z =0, (5.71)

which may be solved for r(x, y, 7). Equations (5.66), (5.69)—(5.71) give the ex-
Plicit form of the Kerr metric in the Kerr—Schild coordinates.

5.3.8 The nature of the singularity

We have seen that the Kerr spacetime possesses a curvature singularity at

p? =12 +a?cos?6 =0,
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According to this equation, the singularity occurs only in the equatorial plane
(@ = n/2), at r = 0. The Kerr—Schild coordinates can help us make sense of this
statement. The relations x2 + y2 = (+2 + a?) sin? 0 and z = r cos @ indicate that
the ‘point’ r = 0 corresponds in fact to the entire disk x? + y? < a? in the plane
z = 0. The points interior to the disk correspond to angles such that sin?6 < 1.
The boundary,

24yt =4
corresponds to the equatorial plane, and this is where the Kerr metric is singular.
The curvature singularity of the Kerr spacetime is therefore located on a ring of
(coordinate) radius a in the x-y plane. This singularity can be avoided: Observers
atr = ( can stay away from the equatorial plane, and they never have to encounter
the singularity; such observers end up going through the ring.

3.3.9 Maximal extension of the Kerr spacetime

We have already constructed coordinate systems that allow the continuation of the
Kerr metric across the event horizon, We now complete the discussion and show
how the spacetime can also be extended beyond the inner horizon. For simplicity
we shall work with the two-dimensional section of the Kerr spacetime obtained by
setting & = 0. This is the rotation axis, and because the Kerr metric is not spheri-
cally symmetric, this does represent a loss of generality.

Going back to Eq. (5.44) and the original Boyer-Lindquist coordinates, we find
that when 8 == (), the Kerr metric reduces to

M 2 2
(Lszz—(l d )dtz—i—f%drz
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A r? 4 g2 r2 + a2
= ——[dr — d dr dr |,
re 4+ a? ( A r) ( t A r)
or
ds? = — f dudv, (5.72)
where u =t — r* and v = ¢ + r* are the coordinates of Section 5.3.6. Here,
A (r—r)(r—ro)
—_ —_ ’ 5.73
‘f ,-2 +a2 r2 +a2 ( )

and ry = M 3 +'M? — a? denote the positions of the outer and inner horizons,
respectively, The metric of Eq. (5.72) is extremely simple, and the construction of
Kruskal coordinates for the # = 0 section of the Kerr spacetime proceeds just as
for the Reissner-Nordstrom (RN) black hole (Section 5.2.2).
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Figure 5.13 Kruskal patches for the Kerr spacetime.

We first consider the continuation of the metric across the event horizon. Near
r = r+ Eq. (5.73) can be approximated by

2 lr —ry),
where k4 = %f’(m). It follows that

N dr 1 1 , ( ),
r*= ) =~ — Inlk.(r —r
7 e + +
and f ~ £2 2+ = 32+ v-u); the upper sign refers to r > r,. and the lower
sign to r < ry. Introducing the new coordinates

U+ = '_'Feuk*“, V+ = 6K+v, (5.74)

we find that near r = r,. the Kerr metric admits the manifestly regular form ds? ~
2% dU dVy.

Just as for the RN spacetime, the coordinates Ut and Vi are singular at the
inner horizon, and another coordinate patch is required to extend the Kerr met-
ric beyond this horizon (Fig. 5.13). The procedure is now familiar, Near r = r_
we approximate Eq. (5.73) by f >~ —2x_(r — r_), where k_ = %lf’(r_)l, so that
f 2 F2e7 2" = £2 8- W=V The appropriate coordinate transformation is now

U_ = Fe“-", Vy=—e " (5.75)

and the metric becomes ds? >~ —2«_? dU_dV_.

Just as for the RN spacetime, another copy of the outer horizon presents itself
in the future of the inner horizon, and another Kruskal patch is required to ex-
tend the spacetime beyond this new horizon. This continues ad nauseam, and we
See that the maximally extended Kerr spacetime contains an infinite succession
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Figure 5.14 Penrose—Carter diagram of the Kerr spacetime.

of asymptotically-flat universes connected by black-hole tunnels. There is more,
however. It is easy to check that in a spacelime diagram based on the (U_,vo)
coordinates, the swrface r = 0 is represented by U_V_ = 1. This is a timelike
surface, and on the rotation axis this surface is nonsingular. The Kerr spacetime
can therefore be extended beyond r = 0, into a region in which r adopts negative
values. This new region has no analogue in the RN spacetime; it contains no hori-
zons and it becomes flat in the {imit » ~> —oco. Observers in this region interpret
the Kerr metric as describing the gravitationa! field of a (naked) ring singularity,
You should be able to convince yourself that this singularity has a negative mass.

The maximally extended Kerr spacetime can be represented by a Penrose—
Carter diagram (Fig. 5.14). The resulting causal structure is extremely complex.
It should be kept in mind, however, that the interior of a Kerr black hole is subject
to the same instability as that of a RN black hole (see Section 5.2.3 and Section 5.7,
Problem 3). The tunnels to other universes, and the rcgions of negative r, are not
present inside physically realistic black holes.

5.3.10 Surface gravity

As was pointed out in Section 5.3.4, the vector

E =1 + Quo°, (5.76)
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where Qg is given by Eq. (5.55), is null at the event horizon and is in fact tangent
to the horizon’s null generators. From the same arguments as those presented in
Section 5.2.4, the black hole’s surface gravity « can be defined by

(—€P&s)., = 21k, (5.77)
or by
§95EP = icg”, (5.78)
or finally, by
K> = -% £%PE, 5. (5.79)

These definitions are all equivalent.

Let us use Eq. (5.77) to calculate the surface gravity. The norm of £ is given
by

¥ sin’ @ P2 A
Peg = > Qp — ) - —,

z
and differentiation yields

2
(—Sﬁgﬁ):a = % A’a

on the horizon, at whichw = Qp and A = 0. We have that A o = 2(r. — M) 07

and &, = (1 — a2y sin® @) dr on the horizon, and a few lines of algebra reveal
that the surface gravity is

= r+—M . '\/1‘42—612
ol a? T r24a?
Notice that this is the same quantity that was denoted « in Section 5.3.9. Notice
also that ¥ = 0 for an extreme Kerr black hole. And finally, notice that in the

general case x does not depend on € ~ the surface gravity is uniforin on the event
horizon. We shall return to this remarkable property in Section 5.5.1.

(5.80)

5.3.11 Bifurcation two-sphere

In the coordinates (v, r, 0, ¥r) which are regular on the event horizon, £€% 8, =
9y + Qg dy. This shows that the horizon’s null generators are parameterized by
the advanced-time coordinate v, but as Eq. (5.78) reveals, v is not affine. An affine
parameter A 1s obtained by integrating

dl_
dv

K
c
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so that kA = ¢ = V. It follows that on the horizon, the vector k% = V=12 gat-
isfies the geodesic equation in affine-parameter form: &%, kf = 0. [This vector is
not equal to the &% introduced in Section 5.3.6, but it is pEOportional to it. It is easy
to check that these vectors are indeed related by k&, = %—Akg‘ld /(r? 4+ a?), where
the right-hand side is Lo be evaluated on the horizon.] If « # 0 and the event hori-
zon is geodesically complete (in the sense that the null generators can be extended

arbitrarily far into the past), the relation
E% = Vi< (5.81)

implies that % = 0 at V = 0. This defines a closed two-surface called the bifurca-
tion two-sphere of the Kerr spacetime. The conditions are sometimes violated: The
event horizon of a black hole formed by gravitational collapse is not geodesicatly
complete, because the horizon was necessarily formed in the finite past; and as we
have seen, the surface gravity of an extreme Kerr black hole (for which M = g)
vanishes. In either one of these situations the bifurcation two-sphere does not exist.

3.3.12 Smarr’s formula

There exists a simple algebraic relation between the black-hole mass M , 1ts angular
momentum J = Ma, and its surface area A. This is defined by

A= % Jo de, (5.82)
FE

where .77 is a two-dimensional cross section of the event horizon, described by
v=constant, r =r,,0 <6 <m,and 0 < ¢y < 2. From Eq. (5.65) we find that
the induced metric is given by

2
aap 484 d6° = p*de? + = sin® 6 dy?,
P

sothat /o d°6 = v/X sin6 df dy = (7.2 + a?) 5in 6 d6 dyp. Integration yields
A=dn(ry? +a?). (5.83)

The algebraic relation, which was discovered by Larry Smarr in 1973, reads

A
M=29y] +52 (5.84)

47
where €2y is the hole’s angular velocity and « its surface gravity, Smarr’s f{or-
mula is established by straightforward algebra: Substituting Eqs. (5.55), (5.80),

and (5.83) into the right-hand side of Eq. (5.84) reveals that it is indeed equal to
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M. We will generalize Smarr’s formula, and present an alternative derivation, in
Section 5.5.2.

5.3.13 Variation law

It 1s clear that the surface area of a black hole is a function of its mass and angu-
lar momentum: A = A(M, J). Suppose that a black hole of mass M and angular
momentum J is perturbed so that its parameters become M +8M and J +§J.
(For example, the black hole might absorb a particle, as was considered in Sec-
tion 5.3.5.) How does the area change? There exists a simple formula relating § A
to the changes in mass and angular momentum. It is

S SA=6M —Qp 57, (5.85)
8

To derive this we start with Eq. (5.83), which immediately implies

BA— éro. +aéd
87[—]"+ | QR aod.

But the horizon radius r, depends on M and a; the defining relation is r, 2 —
2Mr, + a? = 0 and this gives us

(ry —M)éryp =r, M — ada.

This result can be substituted into the preceding expression for §A. The final step |
is to relate @ to the hole’s angular momentum J; we have that ¢ = J/M and this
implies M da = §J — a§M. Collecting these results, we arrive at Eq. (5.85) after
involving Eqgs. (5.55) and (5.80).

In Section 5.3.5 we found that the right-hand side of Eq. (5.85) must be positive,
What we have, therefore, is the statement that the surface area of a Kerr black
hole always increases during a process by which it absorbs a particle. This is a
restricted version of the second law of black-hole mechanics, to which we shall
return in Section 5.5.4.

3.4 General properties of black holes

The Kerr family of solutions to the Einstein field equations plays an extremely
important role in the description of black holes, but this does not mean that alf
black holes are Keir black holes, For example, a black hole accreting matter is not
Stationary, and a stationary hole is not a Kerr black hole if it is tidally distorted
by nearby masscs. In this section we consider those properties of black holes that
are quite general, and not specific to any patticular solution to the Einstein field
equations.
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I (p)

Figure 5.15 Causal future and past of an event p.

5.4.1 General black holes

A spacetime containing a black hole possesses two distinct regions, the interior
and exterior of the black hole; they are distinguished by the property that all exter-
nal observers are causally disconnected from events occurring inside, Physically
speaking, this corresponds to the fact that once she has entered a black hole, an
observer can no longer send signals to the outside world.

These fundamental notions can be cast in mathematical terms. Consider an event
p and the set of all events that can be reached from p by future-directed curves,
either timelike or null (Fig. 5.15). This set is denoted J *(p) and is called the
causal future of p. A similar definition can be given for its causal past, J~(p).
These definitions can be extended to whole sets of events: If S is such a set, then
J(8) is the union of the causal futures of all the events p contained in S; a similar
definition can be given for J ().

Loosely speaking, a spacetime contains a black hole if there exist outgoing
null geodesics that never reach future null infinity. denoted % ¥, These originale
from the black-hole interior, a region characterized by the very fact that all future-
directed curves starting from it fail to reach & *. Thus, events lying within the
black-hole interior cannot be in the causal past of &+, The black-hole region B
of the spacetime manifold .# is therefore the set of all events p that do not belong
to the causal past of future null infinity:

B=u#—J"(I7). (5.86)
The event horizon H is then defined to be the boundary of the black-hole region:
H=03B=09(J"(s™M). (5.87)

The two-dimensional surface obtained by intersecting the event horizon with 2
spacelike hypersurface X is denoted . (X); it is called a cross section of the
horizon.
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Figure 5.16 Event and apparent horizons of a black-hole spacetime.

Because the event horizon is a causal boundary, it must be a null hypersurface.
Penrose (1968) was able to establish that the event horizon is a null hypersur-
Jace generated by null geodesics that have no future end points. This means that:
() when followed into the past, a generator may, but does not have to, leave the
horizon; (i) once a generator has entered the horizon, it cannot leave; (iii) two
generators can never intersect, except possibly when they both enter the horizon;
and finally, (iv) through every point on the event horizon, except for those at which
new generators enter, there passes one and only one generator, It should be clear
that the entry points into the event horizon are caustics of the congruence of null
generators (Fig. 5.16).
The black-hole region typically contains trapped surfaces, closed two-surfaces
§ with the property that for both ingoing and outgoing congruences of null
geodesics orthogonal to S, the expansion is negative everywhere on S. (Excep-
tions are the extreme cases of Kerr, Kerr-Newman, or Reissner-Nordstrdm black
holes, which do not have trapped surfaces.) The three-dimensional boundary of
the region of spacetime that contains trapped surfaces is the frapping horizon, and
its two-dimensional intersection with a spacelike hypersurface X is called an ap-
barent horizon. The apparent horizon is therefore a marginally trapped surface —
a closed two-surface on which one of the congruences has zero expansion. The
4pparent horizon of a stationary black hole typically coincides with the event hori-
zon. In dynamical situations, however, the apparent horizon always lies wirhin the
black-hole region (Fig. 5.16), unless the null energy condition is violated. (Refer
back to Section 5.1.8 for a specific example.)
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The presence of trapped surfaces inside a black hole unequivocally announces
the formation of a singularity; this is the content of the beautiful singularity the-
orems of Penrose (1965) and Hawking and Penrose (1970). The theorems rely
on some form of energy condition (null for Penrose’s original formulation, strong
for the Hawking-Penrose generalization) and require additional technical assump-
tions, The nature of the ‘singularity’ predicted by the theorems is rather vague: The
singularity is revealed by the existence inside the black hole of at least one incom-
plete timelike or null geodesic, but the physical reason for incompleteness is not
identified. In afl known examples satisfying the conditions of the theorems, how-
ever, the black hole contains a curvature singularity at which the Riemann tensor
diverges.

5.4.2 Stationary black holes

It was established by Hawking in 1972 that if a black hole is stationary, then it
must be either static or axially symmetric. This means that the stationary spacetime
of a rotating hole is necessarily axially symmetric and that it admits two Killing
vectors, 1% and ¢, Hawking was also able to show that a linear combination of
these vectors,

£ =% + Quo“, (5.88)

is null at the event horizon. Here, Qg is the hole’s angular velocity, which vanishes
if the spacetime is nonrotating (and therefore static). Thus, the event horizon is
a Killing horizon and £¢ is tangent to the horizon’s null generators, These are
parameterized by advanced time v, so that a displacement along a generator is
described by dx® = £*dv. The hole’s surface gravity « 18 then defined by the
relation

£ 8P = kg®, (5.89)

which holds on the horizon. We will prove in Section 5.5.2 that « is constant along
the horizon’s null generators. (Indeed, it is uniform over the entire hortzon.) This

means that we can replace v by an affine parameter )\ = V/k, where V = ¢V
(Section 5.3.10). Then

k¥ = v lg? (5.90)

satisfies the geodesic equation in affine-parameter form. It follows that if « #0
and the horizon is geodesically complete (in the sense that its generators never
leave the horizon when followed into the past), then there exists a two-surface,
called the bifurcation two-sphere, on which % = (.
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The properties of stationary black holes listed here were all encountered before,
during our presentation of the Kerr solution. It should be appreciated, however, that
Eqgs. (5.88)-(5.90) hold by virtue of the sole fact that the black hole is stationary;
these results do not depend on the specific details of a particular metric.

The observation that a stationary black hole must be axially symmetric if 1t is
rotating might seem puzzling. After all, it should be possible to place a nonsym-
meetrical distribution of matter outside the hole, and let it tidally distort the event
horizon 1n a nonsymmetrical manner. This, presumably, would produce a black
hole that 1s still stationary and rotating, but not axjally symmetric. Hawking and
Hartle (1972) have shown that this, in fact, is false! The reason is that such a distri-
bution of matter would impart a torque on the black hole, which would force it to
spin down to a nonrotating (and static) configuration. Thus, such a situation would
not leave the black hole stationary.

Additional properties of stationary black holes can be inferred from Raychaud-
huri’s equation (Section 2.4.4),

de 1

— = == 67— 0% gup — Ryl (5.91)

in which we have put wgg = 0 to reflect the fact that the congruence of null gener-
ators 1s necessarlly hypersurface orthogonal. The event horizon will be stationary
if 6 and d6 /d. are both zero, Using the Einstein field equations and the null energy
condition, Eq. (5.91) implies that the stress-energy tensor must satisfy

TupE%EP =0 (5.92)

on the horizon. This means that matter cannot be flowing across the event hori-
zon; if it were, the generators would get focused and the biack hole would not be
stationary. Raychaudhuri’s equation also implies

Oap = 0; (5.93)

the null generators of the event horizon have a vanishing shear tensor.

5.4.3 Stationary black holes in vacuum

In the absence of any matter in their exterior, stationary black holes admit an ex-
tremely simple description.

If the black hole is static, then it must be spherically symmetric and it can only
be described by the Schwarzschild solution. This beautiful uniqueness theorem,
the first of its kind, was established by Wemer Israel in 1967. It implies that in the
absence of angular momentum, complete gravitational collapse must result in a
Schwarzschild black hole. This might seem puzzling, because the staterment is true
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irrespective of the initial shape of the progenitor, which might have been strongly
nonspherical. The mechanism by which a nonspherical star shakes off its higher
multipole moments during gravitational collapse was elucidated by Richard Price
in 1972: These multipole moments are simply radiated away, either out to infinity
or into the black hole. After the radiation has faded away the hole settles down to
its final, spherical state.

If the black hole is axially symmetric, then it must be a Kerr black hole. This ex-
tension of Israel’s uniqueness theorem was established by Brandon Carter (1971)
and D.C. Robinson (1975).

The black-hole uniqueness theorems can be generalized to include situations in
which the black hole carries an electric charge. If the black hole is static, then it
must be a Reissner—Nordstrom black hole (Israel, 1968). If it is axially Sy mmetric,
then it must be a Kerr—Newman black hole (Mazur, 1982; Bunting, unpublished).

We see that a black hole in isolation can be characterized, uniquely and com-
pletely, by just three parameters: its mass, angular momentum, and charge. No
other parameter is required, and this remarkable property is af the origin of John
Wheeler’s famous phrase, ‘a black hole has no hair” Chandrasekhar (1987) was
well justified to write:

Black holes are macroscopic objects with masses varying from a few solar masses to mil-
lions of solar masses. To the extent that they may be considered as statiopary and isolated,
to that extent, they are all, every single one of them, described exactly by the Kerr solu-
tion. This is the only instance we have of an exact description of a macroscopic object.
Macroscopic objects, as we see them all around us, are governed by a variety of forces,
derived from a variety of approximations to a variety of physical theories. In contrast, the
only elements in the construction of black holes are our basic concepts of space and time.
They are, thus, almost by definition, the most perfect macroscopic objects there are in the
universe. And since the general theory of relativity provides a single unique two-parameter
family of solutions for their descriptions, they are the simplest objects as well.

5.5 The laws of black-hole mechanics

In 1973, Jim Bardeen, Brandon Carter, and Stephen Hawking formulated a set
of four laws governing the behaviour of black holes. These laws of black-hole
mechanics bear a striking resemblance to the four laws of thermodynamics. While
this analogy was at first perceived to be purely formal and coincidental, it soon
became clear that black holes do indeed behave as thermodynamic systems. The
crucial step in this realization was Hawking’s remarkable discovery of 1974 that
quantum processes allow a black hole to emit a thermal flux of particles. It is thus
possible for a black hole to be in thermal equilibrium with other thermodynamic
systems. The laws of black-hole mechanics, therefore, are nothin g but a description
of the thermodynamics of black holes.
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5.5.1 Preliminaries

We begin our discussion of the four laws by collecting a few important results
from preceding chapters; these will form the bulk of the mathematical framework
required for the derivations.

Let y* = (v, 87) be coordinates on the event horizon. The advanced-time coor-
dinate v is a non-affine parameter on the horizon’s nuil generators, and 84 labels
the generators. The vectors

£ dx® o 0x° 5.04
v e AT \5ed ), (5:54)

are tangent to the horizon; they satisfy £ye} = 0 = £:¢% and £% = * + Qp¢®
is a Killing vector. We complete the basis by introducing an auxiliary null vector
N%, normalized by No&® = —1. This basis gives us the completeness relations
(Section 3.1)

g = —£"NP — NP 4 0788l

where o/

B is the inverse of o5 = Zap eieg, the metric on the two-dimensional
space transverse to the generators. The determinant of the two-metric will be de-
noted ¢.

The vectorial surface element on the event horizon can be expressed as (Sec-

tion 3.2)
dX, = ~&4 dS dv, (5.95)

where dS = /o d%6. The two-dimensional surface element on a cross section v =
constant is

dSup = 2814 Ngy dS. (5.96)

We shall denote such a cross section by ¢ (v).

Finally, we will need Raychaudhuri’s equation for the congruence of nult gen-
erators, expressed in a form that does not require the parameter to be affine. This
was worked out in Section 2.6, Problem 8 and the answer is

do 1

— =8 — =0 — 0"Po,y — ST, 8P, (5.97)
dv 2
the Jast term would normally involve the Ricci tensor, but we have used the Ein-
stein field equations to write it in terms of the stress-energy tensor. We recall

that 6 is the fractional rate of change of the congruence’s cross-sectional area:
8 = (dS)~'d(ds)/dv.
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5.5.2 Zeroth law

The zeroth law of black-hole mechanics states that the surface gravity of a station-
ary black hole is uniform over the entire event horizon. We saw in Section 5.3.10
that this statement is indeed true for the specific case of a Kerr black hole, but the
scope of the zeroth law is much wider: The black hole need not be isolated and its
metric need not be the Kerr metric.

To prove that « is uniform on the event horizon, we need to establish that
(i) « is constant along the horizon’s null generators, and (ii) « does not vary from
generator to generator. We will prove both statements in turn, starting with

I ..
K==y (5.98)

as our definition for the surface gravity. (We saw in Section 5.2.4 that this relation
1s equivalent to f‘:"ﬁéﬁ = £%.) We shall need the identity

Ea;,u,v = Ra,uvﬁé:ﬂa (5.99)

which is satisfied by any Killing vector £%. (This was derived in Section 1.13,
Problem 9.)
We differentiate Eq. (5.98) in the directions tangent to the horizon. (Because «

is defined only on the event horizon, its normal derivative does not exist.} Using
Eq. (5.99) we obtain

2cteo = —EMY Ryyopt? (5.100)
The fact that K. is constant on each generator follows immediately from this:
Ko%= 0. (5.101)

We must now examine how « changes in the transverse directions. Equation
(5.100) implies

o LV o

and we would like to show that the right-hand side is zero. Let us first assume
that the event horizon is geodesically complete, so that it contains a bifurcation
two-sphere, at which £% = 0. Then the last equation implies that « oG = 0 at
the bifurcation two-sphere. Because « ye§ is constant on the null generators (Sec-
tion 5.7, Problem 6), we have that «,«e3 = 0 on all cross sections v = constant of
the event horizon. This shows that the value of ¥ does not change from generator
to generator, and we conclude that « is uniform over the entire event horizon.

It is easy to see that the property « €% = O must be independent of the exis-
tence of a bifurcation two-sphere. Consider two stationary black holes, identical
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in every respect in the future of v = 0 (say), but different in the past, so that only
one of them possesses a bifurcation two-sphere. (We imagine that the first black
hole has existed forever, and that the second black hole was formed priorto v = 0
by gravitational collapse; the second black hole is stationary only for v > 0.) Our
proof that ko€ = 0 on all cross sections v = constant of the event horizon ap-
plies to the first black hole. But since the spacetimes are identical for v > 0, the
propetty k q€% = 0 must apply also to the second black hole. Thus, the zeroth law
is established for all stationary black holes, whether or not they are geodesically
complete.

It is clear that the relation £%VR g e‘jéﬁ = ( must hold everywhere on a
stationary event horizon, but it is surprisingly difficult to prove this. In their orig-
inal discussion Bardeen, Carter, and Hawking establish this identity by using the
Einstein field equations and the dominant energy condition (Section 5.7, Prob-
Jem 7). This restriction was lifted in a 1996 paper by Racz and Wald.

5.5.3 Generalized Smarr formula

Before moving on to the first law, we generalize Smarr’s formula (Section 5.3.12)
that relates the black-hole mass M to its angular momentum J, angular velocity
Qy, surface gravity «, and surface area A. In the present context the black hole 1s
stationary and axially symmetric, but it is not assumed to be a Kerr black hole.

Our starting point is the Komar expressions for total mass and angular momen-
tum (Section 4.3.3):

1 1
M=——@ V%P dS,;, J=— & VP dSus,
8719?9 «p 167 Jg ¢ 4

where the integrations are over a closed two-surface at infinity. We consider a
spacelike hypersurface T extending from the event horizon to spatial infinity
(Fig. 5.17). Its inner boundary is J#, a two-dimensional cross section of the event
horizon, and its outer boundary is S. Using Gauss’ theorem, as was done in Sec-
tion 4.3.3 (but without the inner boundary), we find that M and J can be expressed
as

M=MH+2f

1
(Taﬁ — ;ETgaﬁ)n“tﬁ\/g &y (5.102)
z

and

1
J=Jy— L(Taﬁ - ETgaﬁ)n“¢ﬁdﬁd3y, (5.103)
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Figure 5.17 A spacelike hypersurface in a black-hole spacetime.

where My and Jy are the black-hole mass and angular momentum, respectively.
They are given by surface integrals over 7 :

I
My =—— @ V*FdS,, (5.104)
8o I

and

Ju V@ dSqg, (5.105)

= oo »
where dS,g is the surface element of Eq. (5.96). The interpretation of Eqs. (5.102)
and (5.103) is clear: The total mass M (angular momentum J}is given by a contri-
bution My (/) from the black hole, plus a contribution from the matter distribu-
tion outside the hole. If the black hole is in vacuum, then M = My and J = Jy.

Smarr’s formula emerges after a few simple steps. Using Eqgs. (5.96), (5.104)
and (5.105) we have

| q
My —=2QuJy = - }g@ﬂ VE(tP + Qu¢P) dSep

_ VeERdS
o 8 5 ’ af

I
= Fieg NgdS
4}15&05 EalNp

I
- PNy dS
43"[ ‘%ﬂ!(?‘;' b
K
= ds,
A Jop
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where we have used the relation £*N, = —1 and the fact that k' is constant over
. The last integration gives the horizon’s surface area and we arrive at

My =290y + <4 (5.106)
4

the generalized Smarr formula.

5.5.4 First law

We consider 2 quasi-static process during which a stationary black hole of mass
M, angular momentum J, and surface area A is taken to a new stationary black
hole with parameters M + 8M, J +8J, and A 4 8 A. The first law of black-hole
mechanics states that the changes in mass, angular momentum, and surface area
are related by

SM = %MJFQH 5J. (5.107)

If the initial and final black holes are in vacuum, then they are Kerr black holes
by virtue of the uniqueness theorems, and a derivation of Eq. (5.107) was already
presented in Section 5.3.13. That derivation, however, relied heavily on the details
of the Kerr metric. We will now present a derivation that is largely independent of
those details. In particular we will not assume that the black hole is in vacuum.

We suppose that a black hole, initially in a stationary state, is perturbed by a
small quantity of matter described by the (infinitesimal) stress-energy tensor Tog.
As a result the mass and angular momentum of the black hole increase by amounts
(Section 4.3.4)

SM = _/ 7% tF ds, (5.108)
H
and
8§J = f %qbﬁ d¥,, (5.109)
H

where the integrations are over the entire event horizon. We will be working to first
order in the perturbation Top, keeping 1%, ¢%, and dX, at their unperturbed values.
We assume that at the end of the process, the black hole is returned to another
stationary state.

Substituting the surface element of Eq. (5.95) into Egs. (5.108) and (5.109) we
find

M — Quéd = / Tup(t? + Qu¢?)E¥ dS du

H
= dvjﬁ T.pE°8P dS.
I (v)
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To work out the integral we turn to Eq. (5.97). Because € and oqg are quantities
of the first order in 7,4, it is appropriate to neglect the quadratic terms and Ray-
chaudhuri’s equation simplifies to

de

— =k @ — 8 TppE%EP,
dv o JTﬁEé}'

oM — QHSJ———/‘dv% (—-——-K@) dS
F{v)
+ —fdv% dsS.
—00 I(v)

Because the black hole is stationary both before and after the perturbation, 8 (v =
+00) = 0 and the boundary terms vanish. Using the fact that & is the fractional
rate of change of the congruence’s cross-sectional area, we obtain

d
M — QyéJ = ———‘[dv‘% (———dS) dS

K oo
S f dS’
81 Sy leco

=-—~5A
8

where §A is the change in the black hole’s surface area. This 1s Eq. (5.107}), the
statement of the first law of black-hole mechanics.

Then

—— 8dSs
SE(v)

5.5.5 Second law

The second law of black-hole mechanics states that if the nuil energy condition is
satisfied, then the surface area of a black hole can never decrease: §A > 0. This
area theorem was established by Stephen Hawking in 1971.

Glossing over various technical details, the area theorem follows directly from
the focusing theorem (Section 2.4.5) and Penrose’s observation that the event hori-
zon is generated by null geodesics with no future end points. This statement means
that the generators of the event horizon can never run into caustics. (A generator
can enter the horizon at a caustic point, but once in H it will never meet another
caustic.) The focusing theorem then implies that 8, the expansion of the congru-
ence of null generators, must be positive, or zero, everywhere on the event horizon.
To see this, suppose that 8 < 0 for some of the generators. The focusing theo-
rem then guarantees that these generators will converge into a caustic, at which
6 = —o00. We have a contradiction and we must conclude that § > 0 everywhere
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on the event horizon. This implies that the horizon’s surface area will not decrease,
which is just the statement of the area theorem. (The fact that new generators can
enter the event horizon coniributes even further to the growth of its area.)

5.5.6 Third law

The third law of black-hole mechanics states that if the stress-energy tensor is
bounded and satisfies the weak energy condition, then the surface gravity of a
black hole cannot be reduced to zero within a finite advanced time. A precise
formulation of this law was given by Werner Israel in 1986.

We have seen that a biack hole of zero surface gravity is an extreme black hole.
(Recall that a Kerr black hole is extremal if @ = M, for a Reissner—Nordstrém
black hole, the condition is {Q] = M.) An equivalent statement of the third law is
therefore that under the stated conditions on the stress-energy tensor, it is impos-
sible for a black hole to become extremal within a finite advanced time.

The proof of the third law is rather involved and we will not attempt to go
through it here. Instead of presenting a proof, we will illustrate the fact that the
third law is essentially a consequence of the weak energy condition.

For the purpose of this discussion we need a black-hole spacetime which is
sufficiently dynamical that it has the potential of becoming extremal at a finite
advanced time v. A simple choice is the charged generalization of the ingoing
Vaidya spacetime, whose metric is given by

ds? = — f dv? + 2dv dr + r2dQ2, (5.110)
with

2m() | g% (v)
ey

f=1-

This metric describes a black hole whose mass m and charge ¢ change with time
because of irradiation by charged null dust, a fictitious form of matter. This inter-
pretation is confirmed by inspection of the stress-energy tensor,

(5.111)
I 4 r

T — T8 4+ 728, (5.112)
where
Tob =pllf,  p= 4;,,2 %(’” - %“:*) (5.113)
15 the contribution from the null dust (/, = —d,v is 2 null vector), and
: q°
Tom'p = P diag(—1,—1,1, 1), P=cg (5.114)
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is the contribution from the electromagnetic field. The spacetime of Egs. (5.110)
and (5.111) will produce a violation of the third law if m(vg) = g(vg) for some
advanced time vy < 00.

An essential aspect of this discussion is the weak energy condition (Section 2. 1),
which states that the energy density measured by an observer with four-velocity u®
will always be positive:

Taﬁuauﬁ > ().

Here, T8 is the stress-energy tensor of Eq. (5.112). If our observer is restricted
to move in the radial direction only, then Taﬁuauﬁ = p(dv/dt)® + P. Because
dv/dr can be arbitrarily large, the weak energy condition requires p > 0. In
partxcular p must be positive at the apparent horizon, r = r,.(v), where ry =
m + (m? — ¢%)Y2. This gives us the following condition:

Arrylp(ry) = mim — g + (m?* — gH V2w > 0, (5.115)

where an overdot indicates differentiation with respect to v.

Let us imagine a situation in which the black hole becomes extremal at a finite
advanced time vg. This means that A(vg) = 0, where A(v) = m(v) — g(v). Be-
cause the black hole was not extremal before v = vy, we have that A(v) > 0 for
v < vp and A(v) must be decreasing as v approaches vg. However, Eq. (5.115)
implies

m(vp) A(vg) > 0,

according to which A(v) must be increasing. We have a contradiction and we con-
clude that the weak encrgy condition prevents the black hole from ever becommg
extremal at a finite advanced time.

5.5.7 Black-hole thermodynamics

The four laws of black-hole mechanics bear a striking resemblance to the laws of
thermodynamics, with « playing the role of temperature, A that of entropy, and
M that of internal energy. Hawking’s discovery that quantum processes give rise
to a thermal flux of particles from black holes implies they do indeed behave as
thermodynamic systems. Black holes have a well-definéd temperature, which as a
matter of fact is proportional to the hole’s surface gravity:

;
T = (5.116)
2

The zeroth law is therefore a special case of the cortesponding law of ther-
modynamics, which states that a system in thermal equilibrium has a unjform
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temperature. The first law, when recognized as a special case of the corresponding
law of thermodynamics, implies that the black-hole entropy must be given by
S = : A 5.117
=154 (5.117)

The second law is therefore also a special case of the corresponding law of ther-
modynamics, which states that the entropy of an isolated system can never de-
crease. In this regard it should be noted that Hawking radiation actually causes
the black-hole area to decrease, in violation of the area theorem. (The radiation’s
stress-energy tensor does not satisfy the null energy condition.) However, the pro-
cess of black-hole evaporation does not violate the generalized second law, which
states that the rotal entropy, the sum of radiation and black-hole entropies, does
not decrease.

The fact that black holes behave as thermodynamic systems reveals a deep con-
nection between such disparate fields as gravitation, guantum mechanics, and ther-
modynamics. This connection is still poorly understood today.

5.6 Bibliographical notes

During the preparation of this chapter I have relied on the following references:
Bardeen, Carter, and Hawking (1973); Carter (1979); Chandrasekhar (1983);
Hayward (1994); Israel (1986a); Israel (1986b); Misner, Thorne, and Wheeler
(1973); Sullivan and Israel (1980); Wald (1984); and Wald (1992).

More specifically:

The term ‘trapping horizon,” used in Sections 5.1.7 and 5.4.1, was introduced
by Sean Hayward in his 1994 paper. The various definitions for the surface gray-
ity (Sections 5.2.4, 5.3.10, 5.4.2, and 5.5.2) are taken from Section 12.5 of Wald
(1984). The discussion of the Kerr black hole is based on Sections 33.1-5 of
Misner, Thorne, and Wheeler, and Sections 57 and 58 of Chandrasekhar. The def-
initions for black-hole region and event horizon are taken from Section 12.1 of
Wald (1984); trapped surfaces and apparent horizons are defined in Wald’s Sec-
tion 9.5 and 12.2, respectively. Penrose’s theorem on the structure of the event hori-
zon (Section 5.4.1) is very nicely discussed in Section 34.4 of Misner, Thorne, and
Wheeler. Section 9.5 of Wald (1984) provides a thorough discussion of the singu-
larity theorems. The general properties of stationary black holes (Section 5 4.2)are
discussed in Section 12.3 of Wald (1984) and Section 6.3.1 of Carter. An overview
of the uniqueness theorems of black-hole spacetimes (Section 5.4.3) can be found
in Section 12.3 of Wald (1984) and Section 6.7 of Carter. In Section 5.5 the deriva-
fions of the zeroth and first laws are taken from Wald’s 1992 Erice lectures. The
gencralized Smarr formula is derived in Section 6.6.1 of Carter. The discussion of
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the second law is adapted from Section 6.1.2 of Carter, The final form of the third
law was given in Israel (1986b); my discussion is based on Sullivan and Israel.
Finally, in the problems below, the material on the Majumdar—Papapetrou solution
is taken from Section 113 of Chandrasekhar, the description of null-dust collapse
18 adapted from Israel (1986a), and the alternative derivation of the zeroth law is
based on Bardeen, Carter, and Hawking.

Suggestions for further reading:

There is a lot more than can be said on black holes. The book by Frolov
and Novikov is a genuine encyclopedia that is well worth consulting. The book
by Thorne, Price, and Macdonald focuses on astrophysical aspects of black-hole
physics, and presents them in an interesting package known as the ‘membrane
paradigm.” The book by Birrell and Davies gives a complete account of the quan-
tum production of particles by black holes (Hawking evaporation). The uniqueness
theorems of black-hole spacetimes are presented by Heusler in his 2003 book.

Since their original formulation by Bardeen, Carter, and Hawking, the laws of
black-hole mechanics have been reformulated in terms of the apparent horizon
(instead of the event horizon). See the recent papers by Ashtekar, Beetle, Krishnan,
and Lewandowski (2001 and 2002) for an account of this interesting development,

The search for a statistical understanding of black-hole entropy continues. For a
survey of various possibilities you might consult the articles by Jacobson (1999),
Sorkin (1998), and Peet (1998).

5.7 Problems

1. The metric of an extreme (Q = +M) Reissner—Nordstrdm black hole is given

by
2 AN =2
M M
ds? = —(1 - ——) de* + (1 - —) dr? + r>d2.

r ¥
(a) Find an appropriate set of Kruskal coordinates for this spacetime.
(b) Show that the region r < M does not contain trapped surfaces.
(¢) Sketch a Penrose-Carter diagram for this spacetime.
(d) Find a coordinate transformation that brings the metric to the form

M\~ M\?
dsZ:—(H—w’;) dr2+(1+?) (dx* + dy? +dz?),

where 72 = x2 + y% 4 z2. Show that in these coordinates, the elec-
tromagnetic field tensor can be generated from the vector potential
Aydx® = (1 + M/7) 1 ds, in which the upper (lower) sign gives
rise to a positive (negative) electric charge.
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(e) Show that the metric
dsz — _cb—zdtz + q)Z(de, +dy2 +dZ2)

and the vector potential Ag dx® = £~ ds produce an exact solu-
tion to the Einstein-Maxwell equations provided that P (x) satisfies
Laplace’s equation V2® = ), Here, V2 is the usual Laplacian operator
of three-dimensional flat space and x = (x, ¥, z). This metric is known
as the Majumdar-Papapetrou solution. Prove that if the spacetime is
asymptotically flat, then the total charge Q and the ADM mass M are
related by Q = +M. Finally, find an expression for ®(x) that corre-
sponds to a collection of N black holes situated at arbitrary positions
Xp(n=1,2,...,N).

2. A black hole is formed by the gravitational collapse of null dust. During the
collapse the metric is given by an ingoing Vaidya solution with mass function
m(v) = v/16. Spacetime is assumed to be flat before the coliapse (v < 0),
and after the collapse (v > vg) the metric is given by a Schwarzschild solution
with mass mg = m(vg) = vg/16. We want to study various properties of this
spacetime,

(a) Show that in the interval 0 < v < vy, outgoing light rays are described
by the parametric equations

r() =cre™, v =dc(l+A)e*,

where ¢ is a constant. Show that v = 4r also describes an outgoing
light ray. Plot a few of these curves in the (v, r) plane, using both
positive and negative values of c. Plot also the position of the apparent
horizon.

(b) Find the parametric equations that describe the event horizon.

(c) Prove that the curvature singularity at r = 0 is naked, in the sense that
it is visible to observers at large distances. Prove also that at the mo-
ment it is visible, the singularity is massless. [It is generally true that
the central singularity of a spherical collapse must be massless if it is
naked. This was established by Lake (1992).]

3. In this problem we have a closer look at the instability of black-hole tunnels, a
topic that was mentioned briefly in Sections 5.2.3 and 5.3.9. We will see that
the instability is caused by the pathological behaviour of the ingoing branch
(v = 00) of the inner horizon (r = r_). For reasons that will become clear, we
shall call this the Cauchy horizon of the black-hole spacetime. For simplicity
we shall restrict our attention to the Reissner—Nordstrdm (RN) spacetime. [The
physics of the Cauchy-horizon instability was this author’s Ph.D. topic; see
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Poisson and Israel (1990). The book by Burko and Ori (1997) presents a rather

complete review of this fascinating part of black-hole physics.]

(a) Consider an event P located anywhere in the future of the Cauchy hori-
zon. Argue that the conditions at P are not uniquely determined by
initial data placed on a spacelike hypersurface X located outside the
black hole. Then argue that the Cauchy horizon is the boundary of
the region of spacetime for which the evolution of this data is unique.
(This region is called the domain of dependence of X, and we say
that the Cauchy problem of general relativity is well posed in this re-
gion. The Cauchy horizon is the place at which the evolution ceases to
be uniquely determined by the initial data; the Cauchy problem breaks
down. In effect, the predictive power of the theory is lost at the Cauchy
horizon.)

(b) Consider a test null fluid with stress-energy tensor 7% = p 1918, where
p is the energy density and l, = —d,v the four-velocity. The fluid
moves paralle] to the Cauchy horizon, along ingoing nuil geodesics.
Prove that p must be of the form

L)

42
where L(v) is an arbitrary function of advanced time v. Show that if
a finite quantity of energy is to enter the black hole, then I — 0 as
v — 00. (How fast must L vanish?) Typically, radiative fields outside
black holes decay in time according to an inverse power law (Price
1972). We shall therefore take L(v) ~ v=? as v — o0, with p larger
than, say, 2.

(c) Consider now a free-falling observer inside the black hole. This observer
moves in the outward radial direction, encounters the null dust, and
measures its energy density to be Tup u®uP, where u® is the observer’s
four-velocity. Show that as the observer crosses the Cauchy horizon,

o~

L(v)e*-v,

Tup u®uf = yP—
where £ = —ugt” and k_ was defined in Section 5.2.2. Conclude that
the measured energy density diverges at the Cauchy horizon, even
though the total amount of energy entering the hole is finite. This is
the pathology of the Cauchy horizon, which ultimately is responsible
for the instability of black-hole tunnels.

4. The equations governing geodesic motion in the Kerr spacetime were given

without justification in Section 5.3.6. Here we provide a derivation, which is
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valid both for timelike and null geodesics. [The general form of the geodesic

equations can be found in Section 33.5 of Misner, Thorne, and Wheeler

(1973).]

(a) By definition, a Killing fensor field £ap 1S one which satisfies the equa-
tion &(ag;y) = 0. Show that if &4 is a Killing tensor and u® satisfies
the geodesic equation (4% ﬁuﬁ = 0), then &up u®u® is a constant of the
motion.

(b) Verify that

Eup = Akialp) + 77 gap

is a Killing tensor of the Kerr spacetime. Here, k% and [% are the null
vectors defined in Section 5.3.6.

(¢) Write the relations E = —1%uy and L = d%uq explicitly in terms of
u® = (t,r, g, cﬁ). Then invert these relations to obtain the equations
for £ and ¢. [Hint: Make sure to involve the inverse metric.]

(d) The Carter constant 2 is defined by

Enp u®uf = 9 + (f, — aff)z.

By working out the left-hand side, derive the equation for 7. [Hint:
Express kg and I, in terms of the Killing vectors, and then Eap u*uf in
terms of E, L, and 72.]

{e) Finally, use the normalization condition gaﬁu“uﬁ = —¢ (where ¢ =1
for timelike geodesics and ¢ = 0 for null geodesics) to obtain the equa-
tton for 4.

Let [ be a null, geodesic vector field in flat spacetime. With this vector and
an arbitrary scalar function H we construct a new metric tensor gqg:

8ap = Nup + Hlglg,

where 7qg is the Minkowski metric and I, = napl . Such a metric is called a

Kerr-Schild metric.

(a) Show that [* 1s null with respect to both metrics.

(b) Show that g% = 3 — HI¥I# is the inverse metric.

(c) Prove that I, = gaﬁlﬁ and [¥ = g“ﬁlﬁ. Thus, indices on the null vector
can be lowered and ratsed with ejther metric.

(d) Calculate the Christoffel symbols for gog. Show that they satisfy the re-
lations

1 L.
LTl = =5 Hlulp,  1“T%p= 5 HI®lp,

where H = H ,I*
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(e) Prove that l“fﬁlﬂ = 0. Thus, {* is a geodesic vector field in both metrics.

(f) Prove that the component Rypl?l A of the Ricci tensor vanishes for any
choice of function H.

6. Complete the discussion of the zeroth law by proving that « 4 e’ 1s constant
along the null generators of a stationary event horizon.

7. In this problem we provide an alternative derivation of the zeroth law of
black-hole mechanies. This derivation is based on the original presentation
by Bardeen, Carter, and Hawking (1973); it uses the Einstein field cquations
and the dominant energy condition.

() We have scen that the vector £ is tangent to the null generators of the
event horizon. It possesses the following properties: (i) £2 is nuil on the
horizon; (i1) E‘fﬂsﬂ = k&” on the horizon; (iii) £ is a Killing vector;
and (vi) the congruence of null generators has zero expansion, shear,
and rotation. Use these facts to infer

Ea;p = (KNQ —}—CABAQ)%"B — ga(KNﬁ —E—CBeBﬂ),

where ¢4 = aAgga;ﬁNaeﬁ. This relation holds on the horizon only.
(b) Prove that the gradient of the surface gravity (in the directions tangent to
the horizon}) is given by

Ko = mRaﬁ},gg‘BNyé‘s — (O'ABCACB)EQ.

This immediately implies that « is constant on each generator:
Ka&% = 0.
(c) Show that the result of part (b) also implies

BC g
Koty = —Rugeitf — o Ropys eﬁegegg .

(d) The quantitics Bpg = &, €5 e’ and their tangential derivatives must all
vanish on the horizon. Use this observation to derive

g
Ragys € egeég = 0.

This relations holds on the horizon only.
(e) Collecting the resuits of parts (c) and (d), use the Einstein field equations

to write

Koy = 87 jues,
where j* = —T7%&F represents a flux of momentum across the hori-
Zon.

(f) The dominant energy condition states that /% should be either timelike
or null, and future directed. Use this, together with the stationary
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condition Top&®£# = 0, to prove that j® must be parallel to £%. Under
these conditions, therefore,

Koty =0,

and the zeroth law is established.
The unique solution to the Einstein~Maxwell equations describing an isolated
black hole of mass M, angular momentum J = aM, and electric charge Q is
known as the Kerr—Newman solution; it was discovered by Newman ef al. in
1965. The Kerr—-Newman metric can be expressed as
2 2
A )
ds? = 22 d? + = sin20(dg — wdn)? + 2 dr? + p2ae?,
z p A
where p% = r2+a%c0s?8, A =r2—2Mr +a’+ 0% ¥ =(r?+4a%?-
a?Asin? 8, and w = a(r? + a® — A}/ %. The metric comes with a vector po-
tential

Ay dx® = _—Q; (dt — asin?8 dqb).
P
When Q = 0, A, = 0 and this reduces to the Kerr solution.
(a) Find expressions for ry, the radius of the event horizon, and Qg, the
angular velocity of the black hole,
(b) Prove that the vector field
2 4+ g2

a
[ 8y = — 8 — &+ 3

is tangent to a congruence of ingoing null geodesics. Prove also that

r+fr2+a2d
= v
v A

and

¢E¢+f%dr

are constant on each member of the congruence.

(¢) Show that in the coordinates (v, r, 8, ¥), the Kerr-Newman metric takes
the form
A — a’sin?@ 2ra?2—A
azs1 dv2+2dvdr~2ar + 5
p p

ds? = —

sin 4 dv dyr
by

—2asin® 6 dr dyr + = sin®6 dy” + p* d6”.
0

Find an expression for A, is this coordinate system.



222 Black holes
(d) Show that the vectors
E% 0y = 0y + Qp By, e 9 = Oy, ey 0o = 3y,
and
_ a%sin6 B ry? 4+ a?
2ri 2 +a2cos?8) ©  ry2+4a’cos2g

a 2r.2 4+ a%(1 + cos?9)
2(re24+a?)  ry2+a®cos?o

N% 8y =

14

form a good basis on the event horizon. In particular, prove that

they give rise to the completeness relations g% = —£*NF — NogB

AB o B AB : . . : _ o
0”7 &l ey, where o is the inverse of o045 = gap €€,

(e) Prove that the surface gravity of a Kerr-Newman black hole is given by
r+,—-A{
re? 4+ a2

Prove also that the hole’s surface area is

K =

A= 43’((?’4_2 + a?').

(f) Compute the black-hole mass My and the black-hole angular momentum
Ju of a Kerr—-Newman black hole. (These quantities are defined in
Section 5.5.3.) Make sure that your results are compatible with the
following expressions:

2 2 2
My = Ty +d |:1 _ & arctan(a/q):l

2F+ ary

and

2,2 2 2,2
Jy=a Iy & {1 + —Q—[I — -ri—t—ci—arctan(a/m)”.

2ry 2a? ar..

Verify that these expressions satisfy the generalized Smarr formuia.
(g) Derive the following alternative version of Smarr’s formula:

KA
A
where

ryQ
Oy = — AgE® =X
“ at r=ry  ry24a?

is the elcctrostatic potential at the horizon.



5.7 Problems 223

(h) Consider a quasi-static process during which a stationary black hole of
mass M, angular momentum J, and electric charge Q is taken to a new
stationary black hole with parameters M + M, J +&J,and Q + 48 Q.
Prove that during such a transformation, the hole’s surface area A will
change by an amount § A given by

SM = 8£3A+QH5.I+¢H3Q.
i

This is the first law of black-hole mechanics for charged, rotating black
holes.
Consider a quasi-static process during which the surface area of a black hole
changes. (By quasi-static we mean that dA/dv is very small.) Derive the
Hawking—Hartle formula,

dA_SJT

1
il g9 asfB
= 0 Pogs + T, ds,
dv K ,%ﬂ(v)(gﬂ 7 p aﬁs s )

in which £% is tangent to the null generators of the event horizon and ogg 1s
their shear tensor. The second term within the integral represents the effect
of accreting matter on the surface area. The first term represents the effect of
gravitational radiation flowing across the horizon.
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Deviation, geodesic, see Geodesic deviation equation
Dirac distribution, 85-9, 98, 101, 104, 113, 158
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Einstein, see Einstein field equations
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Membrane paradigm, 216
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Moment of time symmetry, §1-4 115
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83, 87,92, 95,99, 100, 103, 109, 114, 115, 123,
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Retarded time, 152, 153, 135, 160, 161, 165

Ricci tensor, see Curvature tensors, Ricci
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211-3, 222,223
Surface element, ix, 59, 64-9, 72, 106, 133, 149, 207,
210,211
Surface gravity of a black hole, 184-7, 198-200, 204,
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Surface layer, ix, 59, 84-90, 93114, 116
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